- Tytuł:
- On Ambarzumian type theorems for tree domains
- Autorzy:
- Pivovarchik, Vyacheslav
- Powiązania:
- https://bibliotekanauki.pl/articles/2216192.pdf
- Data publikacji:
- 2022
- Wydawca:
- Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
- Tematy:
-
Sturm-Liouville equation
eigenvalue
equilateral tree
star graph
Dirichlet boundary condition
Neumann boundary condition - Opis:
- It is known that the spectrum of the spectral Sturm–Liouville problem on an equilateral tree with (generalized) Neumann’s conditions at all vertices uniquely determines the potentials on the edges in the unperturbed case, i.e. case of the zero potentials on the edges (Ambarzumian’s theorem). This case is exceptional, and in general case (when the Dirichlet conditions are imposed at some of the pendant vertices) even two spectra of spectral problems do not determine uniquely the potentials on the edges. We consider the spectral Sturm–Liouville problem on an equilateral tree rooted at its pendant vertex with (generalized) Neumann conditions at all vertices except of the root and the Dirichlet condition at the root. In this case Ambarzumian’s theorem can’t be applied. We show that if the spectrum of this problem is unperturbed, the spectrum of the Neumann-Dirichlet problem on the root edge is also unperturbed and the spectra of the problems on the complimentary subtrees with (generalized) Neumann conditions at all vertices except the subtrees’ roots and the Dirichlet condition at the subtrees’ roots are unperturbed then the potential on each edge of the tree is 0 almost everywhere.
- Źródło:
-
Opuscula Mathematica; 2022, 42, 3; 427-437
1232-9274
2300-6919 - Pojawia się w:
- Opuscula Mathematica
- Dostawca treści:
- Biblioteka Nauki