Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "scanning electron" wg kryterium: Temat


Tytuł:
Investigation and vizualization of the cells grown on ceramic coating by electron microscopy techniques
Autorzy:
Karbowniczek, J.
Gruszczyński, A.
Kruk, A
Czyrska-Filemonowicz, A.
Powiązania:
https://bibliotekanauki.pl/articles/285222.pdf
Data publikacji:
2017
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Polskie Towarzystwo Biominerałów
Tematy:
biocompatibility
biomaterials
scanning electron microscopy
Źródło:
Engineering of Biomaterials; 2017, 20, no. 143 spec. iss.; 37
1429-7248
Pojawia się w:
Engineering of Biomaterials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A method of magnetic field measurement in a scanning electron microscope using a microcantilever magnetometer
Autorzy:
Orłowska, Karolina
Mognaschi, Maria E.
Kwoka, Krzysztof
Piasecki, Tomasz
Kunicki, Piotr
Sierakowski, Andrzej
Majstrzyk, Wojciech
Podgórni, Arkadiusz
Pruchnik, Bartosz
di Barba, Paolo
Gotszalk, Teodor
Powiązania:
https://bibliotekanauki.pl/articles/220725.pdf
Data publikacji:
2020
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
scanning electron microscope
magnetometry
microcantilever
Opis:
Scanning electron microscopy (SEM) is a perfect technique for micro-/nano-object imaging [1] and movement measurement [2, 3] both in high and environmental vacuum conditions and at various temperatures ranging from elevated to low temperatures. In our view, the magnetic field expanding from the pole-piece makes it possible to characterize the behaviour of electromagnetic micro- and nano-electromechanical systems (MEMS/NEMS) in which the deflection of the movable part is controlled by the electromagnetic force. What must be determined, however, is the magnetic field expanding from the e-beam column, which is a function of many factors, like working distance (WD), magnification and position of the device in relation to the e-beam column. There are only a few experimental methods for determination of the magnetic field in a scanning electron microscope. In this paper we present a method of the magnetic field determination under the scanning electron column by application of a silicon cantilever magnetometer. The micro-cantilever magnetometer is a silicon micro-fabricated MEMS electromagnetic device integrating a current loop of lithographically defined dimensions. Its stiffness can be calibrated with a precision of 5% by the method described by Majstrzyk et al. [4]. The deflection of the magnetometer cantilever is measured with a scanning electron microscope and thus, through knowing the bias current, it is possible to determine the magnetic field generated by the e-beam column in a defined position and at a defined magnification.
Źródło:
Metrology and Measurement Systems; 2020, 27, 1; 141-149
0860-8229
Pojawia się w:
Metrology and Measurement Systems
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The suitability of scanning electron microscopy in the evaluation of bone structure surfaces and selection of alloplastic materials for facial skeletal reconstruction
Autorzy:
Job, Katarzyna
Składzień, Jacek
Powiązania:
https://bibliotekanauki.pl/articles/1397288.pdf
Data publikacji:
2021
Wydawca:
Index Copernicus International
Tematy:
hydroxyapatite
scanning electron microscope
secondary electron detection
Opis:
Introduction: Functional and aesthetic problems can arise even from small losses created in the facial skeleton. Injuries and oncological surgeries are the most frequent causes of these losses within the facial skeleton. Advances in surgical interventions have allowed for ever-increasing degrees of resections, increasing oncological radicality as well as treatment effectiveness, providing the patient with the chance for a longer life. However, this subsequently requires the use of even more advanced reconstruction techniques in order to restore quality of life and comfort to the patient, as well as enable their return to professional and social activities. The necessity of reconstructive surgery applies not only to patients with cancer, but also to patients with impaired or failing sensory and organ function as a result of inflammatory conditions, injuries, or non-oncological surgeries. There are many available reconstruction procedures, which depend on the location of the loss, the type of tissue lost, the degree of loss and patient-dependent factors. Materials used in reconstruction surgeries may include the patients’ tissues when available, and artificial reconstruction materials otherwise. Material and methods: The analysis involved fragments of bone tissue removed during surgery. Due to the nature of the medical procedure and the inability to replant the tissue, it was regarded as medical waste. The preparations used were observed under an optical microscope and an electron scanning microscope, and a chemical analysis was performed. The chemical composition of samples was analysed using a low vacuum detector (LVD) at an accelerating voltage of 15 kV and 10 kV and at a spot size of 4 and 3.5. The observations were performed in a secondary electron (SE) detection system. Results: Observation of parameters under an optical microscope and of images obtained using an electron scanning microscope showed the presence of typical, compact bone tissue with varied surface shapes in each case (various degrees of unevenness and porosity). Chemical composition analysis confirmed the presence of compounds from the CaO-P2O5-H20 system. The Ca/P (calcium/phosphorus) ratio obtained from the chemical analysis varied from 1.33 to 2.1, and indicated a varied morphology of calcium phosphates forming the bone structures of the facial skeleton. Conclusions: 1. Calcium phosphates are characterised by excellent biocompatibility because of their chemical affinity to bone, and are ideal for the reconstruction of bone losses within the facial skeleton. 2. Biodegradable polymers have the highest functional potential among several groups of biomaterials used in tissue engineering because of their ability to be tailored individually, in addition to their high biocompatibility.
Źródło:
Polish Journal of Otolaryngology; 2021, 75, 4; 14-19
0030-6657
2300-8423
Pojawia się w:
Polish Journal of Otolaryngology
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Use of scanning electron microscopy for the study of Hoplopleura (Phthiraptera, Anoplura) lice taxonomy
Autorzy:
Kozina, P.
Izdebska, J.N.
Mierzynski, L.
Powiązania:
https://bibliotekanauki.pl/articles/5924.pdf
Data publikacji:
2016
Wydawca:
Polskie Towarzystwo Parazytologiczne
Tematy:
scanning electron microscopy
Hoplopleura
Phthiraptera
Anoplura
taxonomy
Źródło:
Annals of Parasitology; 2016, 62, Suppl.
0043-5163
Pojawia się w:
Annals of Parasitology
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Prospective observational study of adenoidal biofilms in a paediatric population and its clinical implications
Autorzy:
Subtil, Joao
Bajanca-Lavado, Maria Paula
Rodrigues, Joao
Duarte, Aida
Reis, Lucia
Nogueira, Isabel
Jordao, Luisa
Powiązania:
https://bibliotekanauki.pl/articles/1397787.pdf
Data publikacji:
2019
Wydawca:
Index Copernicus International
Tematy:
Adenoids
biofilms
scanning electron microscopy
Haemophilus
child.
Opis:
INTRODUCTION: Adenoids are nasopharyngeal lymphoid tissue with a relevant role in host defence against infection of upper respiratory tract. Nevertheless, adenoids are also a reservoir of microorganisms that can cause infections of upper respiratory tract and otitis particularly in children. OBJECTIVE: Evaluate and compare the association between biofilm assembly on adenoids and the incidence of recurrent infections in a paediatric population submitted to adenoidectomy by either infectious or non-infectious indication. METHODS: Scanning electron microscopy was used to assess biofilms on adenoid surface; biofilm assembly in vitro was monitored by crystal violet assay; antibiotic susceptibility was assessed following EUCAST guidelines; Hinfluenzae capsular typing was performed by PCR. RESULTS: Biofilms were present in 27.4% of adenoid samples and no statistical difference was found between infectious and non-infectious groups. In vitro, the most clinically relevant bacteria, H.influenzae, S.aureus, S.pyogenes, S.pneumoniae and M.catarrhalis, were mostly moderate biofilm assemblers (71.7%). 55.3% of these bacteria were intermediate/resistant to at least one of the tested antibiotics. No association was found between the ability to assemble biofilms in vitro and the presence of biofilms on adenoids nor antibiotic resistance. All H.influenzae were characterized as non-typeable. CONCLUSION: The presence of biofilms on adenoid surface was independent from clinical sample background. Bacterial ability to assemble biofilms in vitro cannot be used to predict biofilm assembly in vivo. The lack of correlation between biofilm formation and infectious respiratory diseases found contributes to question the relevance of biofilms on the pathogenesis of infectious diseases.
Źródło:
Polish Journal of Otolaryngology; 2019, 73, 1; 22-28
0030-6657
2300-8423
Pojawia się w:
Polish Journal of Otolaryngology
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The Beam Current Considerations in SEM Accordance to Mirror Effect Phenomenon
Autorzy:
Al-Obaidi, H. N.
Khaleel, I. H.
Powiązania:
https://bibliotekanauki.pl/articles/411880.pdf
Data publikacji:
2013
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
scanning electron microscope
Electron Beam Current
Electron Mirror Images
Opis:
A theoretical investigation have been presented to exploring the influence of electrons beam current on the electron mirror image deduced inside the scanning electron microscope (SEM). A rough mathematical expression for the electric potential that associated with electron beam is derived. The results clearly shows that the beam current could be used to enhance or conversely deteriorate the phenomena of mirror effect. So this work procedure may consider to be tool controllable of this phenomena for investigation purposes.
Źródło:
International Letters of Chemistry, Physics and Astronomy; 2013, 10, 1; 70-75
2299-3843
Pojawia się w:
International Letters of Chemistry, Physics and Astronomy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Auditory ossicles in Scanning Electron Microscopy
Autorzy:
Wiatr, Agnieszka
Składzień, Jacek
Wiatr, Maciej
Powiązania:
https://bibliotekanauki.pl/articles/1397399.pdf
Data publikacji:
2020-05-12
Wydawca:
Index Copernicus International
Tematy:
middle ear surgery
ossicular chain
Scanning Electron Microscope
Opis:
Introduction: Knowledge about the physiology of a healthy middle ear is essential for understanding the activity and mechanics of the ear as well as the basics of ossiculoplasty. Trauma of the epithelial lining of the tympanic cavity as well as the ossicular chain may be the result of chronic inflammation and surgery. Depending on the observed changes of the middle ear lining, there are several types of distinguished chronic inflammatory changes: simple, with cholesteatoma, with the formation of inflammatory granulation tissue, in course of specific diseases. Purpose: The aim of the article is presentation of the microstructure and vasculature of the ossicular chain in the Scanning Electron Microscope. Particular attention is drawn to the anatomical aspects of the structure and connections of auditory ossicles as vital elements for reconstruction of the conduction system of the middle ear. Material and method: The analysis covered auditory ossicles standardly removed in accordance with the methodology of the investigated surgical procedures. The preparations were evaluated in a scanning electron microscope. Results: The exposure of bone surface promotes deep erosion. The advanced process of destruction of bone surface in the case of chronic otitis media correlates with a significant degree of damage to both the lining covering the auditory ossicles and that surrounding articular surfaces. Conclusions: (1) The ossicles in the image of the Scanning Electron Microscope are covered with lining. It passes from the surface of the ossicles to the vascular bundles, forming vascular sheaths; (2) Damage to lining continuity on the surface of the auditory ossicles promotes the rapid destruction of bone tissue in the inflammatory process; (3) The dimensions of the individual ossicles are respectively: malleus – 8.36 +/- 0.01, incus – 8.14 +/- 0.0, stapes – 3.23 +/- 0.01 mm. Behavior of the anatomical length of ossicular chain during tympanoplasty appears to be essential to maintaining adequate vibration amplitude of the conductive system of the middle ear.
Źródło:
Polish Journal of Otolaryngology; 2020, 74, 4; 1-7
0030-6657
2300-8423
Pojawia się w:
Polish Journal of Otolaryngology
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Deformation Mechanisms and Fracture of Ni-Based Metallic Glasses
Autorzy:
Lesz, S.
Griner, S.
Nowosielski, R.
Powiązania:
https://bibliotekanauki.pl/articles/353790.pdf
Data publikacji:
2016
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
metals
transmission electron microscopy
scanning electron microscopy
fracture
shear bands
Opis:
The cracking of materials and fracture surface is of great practical and academic importance. Over the last few years the development of the fractography of crystalline alloys resulted in a useful tool for the prediction or failure analysis. Many attempts have been made to observe cracks using optical microscopy, X-ray topography and transmission electron microscopy (TEM). Of these techniques, the resolution of optical microscopy and X-ray topography is too poor. By contrast, the resolution of TEM is high enough for detailed information to be obtained. However, in order to apply TEM observations, a thin foil specimen must be prepared, and it is usually extremely difficult to prepare such a specimen from a pre-selected region containing a crack. In the present work, deformation mechanisms fracture surfaces of Ni-based metallic glass samples have been studied by specially designed experiments. In order to study the deformation mechanisms and fracture the Ni-based metallic glasses have been investigated in the tensile test. The structure and fracture surfaces after the decohesion process in tensile tests were observed using transmission electron microscope (TEM) and scanning electron microscope (SEM), respectively. The studies of structure were performed on thin foils. Moreover the investigated tape was subjected to a banding test. Then, the tape was straightened and the thin foil from the area of maximum strain was prepared. This thin foil sample was deformed before the TEM investigation to obtain local tears.
Źródło:
Archives of Metallurgy and Materials; 2016, 61, 2A; 791-796
1733-3490
Pojawia się w:
Archives of Metallurgy and Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Influence of Milling Time on Amorphization of Mg-Zn-Ca Powders Synthesized by Mechanical Alloying Technique
Autorzy:
Lesz, S.
Kremzer, M.
Gołombek, K.
Nowosielski, R.
Powiązania:
https://bibliotekanauki.pl/articles/354717.pdf
Data publikacji:
2018
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
Mg-based powders
transmission electron microscopy
scanning electron microscopy
mechanical alloying
Opis:
Mg60 Zn35 Ca5 amorphous powder alloys were synthesized by mechanical alloying (MA) technique. The results of the influence of high-energy ball-milling time on amorphization of the Mg60 Zn35 Ca5 elemental blend (intended for biomedical application) were presented in the study. The amorphization process was investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM). Initial elemental powders were mechanically alloyed in a Spex 8000 high-energy ball mill at different milling times (from 3 to 24 h). Observation of the powder morphology after various stages of milling leads to the conclusion that with the increase of the milling time the size of the powder particles as well as the degree of aggregation change. The partially amorphous powders were obtained in the Mg60 Zn35 Ca5 alloy after milling for 13-18h. The results indicate that this technique is a powerful process for preparing Mg60 Zn35 Ca5 alloys with amorphous and nanocrystalline structure.
Źródło:
Archives of Metallurgy and Materials; 2018, 63, 2; 845-851
1733-3490
Pojawia się w:
Archives of Metallurgy and Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Epidermal micromorphology of Hordelymus europaeus (L.) Jess. ex Harz (Poaceae)
Autorzy:
Klimko, M.
Nowinska, R.
Czarna, A.
Powiązania:
https://bibliotekanauki.pl/articles/790567.pdf
Data publikacji:
2015
Wydawca:
Uniwersytet Przyrodniczy w Poznaniu
Tematy:
micromorphology
Hordelymus europaeus
Poaceae
scanning electron microscope
reproductive organ
Opis:
This paper presents the macromorphological and micromorphological characteristics of wood barley recorded in the Wielkopolska Lowland. On the basis of the collection of preserved specimens, the micromorphological features were examined under a scanning electron microscope (SEM) to assess their taxonomic value. The principal features include the size and shape of cork/silica cells, crown cells, prickles, macro-hairs and stomata as well as the morphology of long cells in vegetative and reproductive organs.
Źródło:
Steciana; 2015, 19, 2
1689-653X
Pojawia się w:
Steciana
Dostawca treści:
Biblioteka Nauki
Artykuł

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies