Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "radio labeling" wg kryterium: Temat


Wyświetlanie 1-7 z 7
Tytuł:
Radio numbers for generalized prism graphs
Autorzy:
Martinez, Paul
Ortiz, Juan
Tomova, Maggy
Wyels, Cindy
Powiązania:
https://bibliotekanauki.pl/articles/744118.pdf
Data publikacji:
2011
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
radio number
radio labeling
prism graphs
Opis:
A radio labeling is an assignment c:V(G) → N such that every distinct pair of vertices u,v satisfies the inequality d(u,v) + |c(u)-c(v)| ≥ diam(G) + 1. The span of a radio labeling is the maximum value. The radio number of G, rn(G), is the minimum span over all radio labelings of G. Generalized prism graphs, denoted $Z_{n,s}$, s ≥ 1, n ≥ s, have vertex set {(i,j) | i = 1,2 and j = 1,...,n} and edge set {((i,j),(i,j ±1))} ∪ {((1,i),(2,i+σ)) | σ = -⌊(s-1)/2⌋...,0,...,⌊s/2⌋}. In this paper we determine the radio number of $Z_{n,s}$ for s = 1,2 and 3. In the process we develop techniques that are likely to be of use in determining radio numbers of other families of graphs.
Źródło:
Discussiones Mathematicae Graph Theory; 2011, 31, 1; 45-62
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Radio Number of Cycles and their Total Graphs
Autorzy:
Merlin, E. T.
Mangam, Tabitha Agnes
Powiązania:
https://bibliotekanauki.pl/articles/1177700.pdf
Data publikacji:
2018
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
Radio labeling
Radio number
Total graph
Opis:
A radio labeling f of G is an assignment of positive integers to the vertices of G satisfying, │f (u) – f (v)│≥ diam(G) + 1 - d (u ,v) ∀ u, v ∈ V (G) where d (u ,v) is the distance between any two vertices in the graph. The radio number denoted by rn (G) is the minimum span of a radio labeling for G. In this paper, an alternate proof for radio number of cycles and exact radio number for their total graphs has been discussed.
Źródło:
World Scientific News; 2018, 101; 55-64
2392-2192
Pojawia się w:
World Scientific News
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Radio Graceful Hamming Graphs
Autorzy:
Niedzialomski, Amanda
Powiązania:
https://bibliotekanauki.pl/articles/31340550.pdf
Data publikacji:
2016-11-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
radio labeling
radio graceful graph
Hamming graph
Opis:
For $ k \in \mathbb{Z}_+ $ and $G$ a simple, connected graph, a $k$-radio labeling $ f : V (G) \rightarrow \mathbb{Z}_+ $ of $G$ requires all pairs of distinct vertices $u$ and $v$ to satisfy $ |f(u) − f(v)| \ge k + 1 − d(u, v) $. We consider $k$-radio labelings of $G$ when $ k = \text{diam} (G)$. In this setting, $f$ is injective; if $f$ is also surjective onto $ {1, 2, . . ., |V (G)|} $, then $f$ is a consecutive radio labeling. Graphs that can be labeled with such a labeling are called radio graceful. In this paper, we give two results on the existence of radio graceful Hamming graphs. The main result shows that the Cartesian product of $t$ copies of a complete graph is radio graceful for certain $t$. Graphs of this form provide infinitely many examples of radio graceful graphs of arbitrary diameter. We also show that these graphs are not radio graceful for large $t$.
Źródło:
Discussiones Mathematicae Graph Theory; 2016, 36, 4; 1007-1020
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Linear and cyclic radio k-labelings of trees
Autorzy:
Kchikech, Mustapha
Khennoufa, Riadh
Togni, Olivier
Powiązania:
https://bibliotekanauki.pl/articles/743693.pdf
Data publikacji:
2007
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
graph theory
radio channel assignment
cyclic and linear radio k-labeling
Opis:
Motivated by problems in radio channel assignments, we consider radio k-labelings of graphs. For a connected graph G and an integer k ≥ 1, a linear radio k-labeling of G is an assignment f of nonnegative integers to the vertices of G such that
$|f(x)-f(y)| ≥ k+1-d_G(x,y)$,
for any two distinct vertices x and y, where $d_G(x,y)$ is the distance between x and y in G. A cyclic k-labeling of G is defined analogously by using the cyclic metric on the labels. In both cases, we are interested in minimizing the span of the labeling. The linear (cyclic, respectively) radio k-labeling number of G is the minimum span of a linear (cyclic, respectively) radio k-labeling of G. In this paper, linear and cyclic radio k-labeling numbers of paths, stars and trees are studied. For the path Pₙ of order n ≤ k+1, we completely determine the cyclic and linear radio k-labeling numbers. For 1 ≤ k ≤ n-2, a new improved lower bound for the linear radio k-labeling number is presented. Moreover, we give the exact value of the linear radio k-labeling number of stars and we present an upper bound for the linear radio k-labeling number of trees.
Źródło:
Discussiones Mathematicae Graph Theory; 2007, 27, 1; 105-123
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Radio k-labelings for Cartesian products of graphs
Autorzy:
Kchikech, Mustapha
Khennoufa, Riadh
Togni, Olivier
Powiązania:
https://bibliotekanauki.pl/articles/743543.pdf
Data publikacji:
2008
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
graph theory
radio channel assignment
radio k-labeling
Cartesian product
radio number
antipodal number
Opis:
Frequency planning consists in allocating frequencies to the transmitters of a cellular network so as to ensure that no pair of transmitters interfere. We study the problem of reducing interference by modeling this by a radio k-labeling problem on graphs: For a graph G and an integer k ≥ 1, a radio k-labeling of G is an assignment f of non negative integers to the vertices of G such that
$|f(x)-f(y)| ≥ k+1-d_G(x,y)$,
for any two vertices x and y, where $d_G(x,y)$ is the distance between x and y in G. The radio k-chromatic number is the minimum of max{f(x)-f(y):x,y ∈ V(G)} over all radio k-labelings f of G. In this paper we present the radio k-labeling for the Cartesian product of two graphs, providing upper bounds on the radio k-chromatic number for this product. These results help to determine upper and lower bounds for radio k-chromatic numbers of hypercubes and grids. In particular, we show that the ratio of upper and lower bounds of the radio number and the radio antipodal number of the square grid is asymptotically [3/2].
Źródło:
Discussiones Mathematicae Graph Theory; 2008, 28, 1; 165-178
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Radio number for some thorn graphs
Autorzy:
Marinescu-Ghemeci, Ruxandra
Powiązania:
https://bibliotekanauki.pl/articles/744574.pdf
Data publikacji:
2010
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
multilevel distance labeling
radio number
caterpillar
diameter
Opis:
For a graph G and any two vertices u and v in G, let d(u,v) denote the distance between u and v and let diam(G) be the diameter of G. A multilevel distance labeling (or radio labeling) for G is a function f that assigns to each vertex of G a positive integer such that for any two distinct vertices u and v, d(u,v) + |f(u) - f(v)| ≥ diam(G) + 1. The largest integer in the range of f is called the span of f and is denoted span(f). The radio number of G, denoted rn(G), is the minimum span of any radio labeling for G. A thorn graph is a graph obtained from a given graph by attaching new terminal vertices to the vertices of the initial graph. In this paper the radio numbers for two classes of thorn graphs are determined: the caterpillar obtained from the path Pₙ by attaching a new terminal vertex to each non-terminal vertex and the thorn star $S_{n,k}$ obtained from the star Sₙ by attaching k new terminal vertices to each terminal vertex of the star.
Źródło:
Discussiones Mathematicae Graph Theory; 2010, 30, 2; 201-222
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
On Radio Connection Number of Graphs
Autorzy:
Marinescu-Ghemeci, Ruxandra
Powiązania:
https://bibliotekanauki.pl/articles/31343294.pdf
Data publikacji:
2019-08-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
radio connection number
radio coloring
L (2, 1)-connection number
L (2, 1)-connectivity
L (2, 1)-labeling
Opis:
Given a graph G and a vertex coloring c, G is called l-radio connected if between any two distinct vertices u and v there is a path such that coloring c restricted to that path is an l-radio coloring. The smallest number of colors needed to make G l-radio connected is called the l-radio connection number of G. In this paper we introduce these notions and initiate the study of connectivity through radio colored paths, providing results on the 2-radio connection number, also called L(2, 1)-connection number: lower and upper bounds, existence problems, exact values for known classes of graphs and graph operations.
Źródło:
Discussiones Mathematicae Graph Theory; 2019, 39, 3; 705-730
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-7 z 7

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies