Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "quantum-inspired evolutionary algorithm" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Quantum-inspired evolutionary optimization of SLMoS2 two-phase structures
Autorzy:
Kuś, Wacław
Mrozek, Adam
Powiązania:
https://bibliotekanauki.pl/articles/29520072.pdf
Data publikacji:
2022
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
quantum-inspired evolutionary algorithm
optimization
nanostructure
two-phase SLMoS2
molecular dynamics
molecular statics
atomic potential
ReaxFF
material properties
Opis:
The paper focuses on applying a Quantum Inspired Evolutionary Algorithm to achieve the optimization of 2D material containing two phases, 2H and 1T, of Molybdenum Disulphide (MoS2). The goal of the optimization is to obtain a nanostructure with tailored mechanical properties. The design variables describe the shape of inclusion made from phase 1T in the 2H unit cell. The modification of the size of the inclusions leads to changes in the mechanical properties. The problem is solved with the use of computed mechanical properties on the basis of the Molecular Statics approach with ReaxFF potentials.
Źródło:
Computer Methods in Materials Science; 2022, 22, 2; 67-78
2720-4081
2720-3948
Pojawia się w:
Computer Methods in Materials Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
GPU-based tuning of quantum-inspired genetic algorithm for a combinatorial optimization problem
Autorzy:
Nowotniak, R.
Kucharski, J.
Powiązania:
https://bibliotekanauki.pl/articles/201268.pdf
Data publikacji:
2012
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
quantum-inspired genetic algorithm
evolutionary computing
meta-optimization
parallel algorithms
GPGPU
Opis:
This paper concerns efficient parameters tuning (meta-optimization) of a state-of-the-art metaheuristic, Quantum-Inspired Genetic Algorithm (QIGA), in a GPU-based massively parallel computing environment (NVidia CUDATMtechnology). A novel approach to parallel implementation of the algorithm has been presented. In a block of threads, each thread transforms a separate quantum individual or different quantum gene; In each block, a separate experiment with different population is conducted. The computations have been distributed to eight GPU devices, and over 400× speedup has been gained in comparison to Intel Core i7 2.93GHz CPU. This approach allows efficient meta-optimization of the algorithm parameters. Two criteria for the meta-optimization of the rotation angles in quantum genes state space have been considered. Performance comparison has been performed on combinatorial optimization (knapsack problem), and it has been presented that the tuned algorithm is superior to Simple Genetic Algorithm and to original QIGA algorithm.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2012, 60, 2; 323-330
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies