Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "pipeline feature" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
Trajectory determination for pipelines using an inspection robot and pipeline features
Autorzy:
Zhang, Shuo
Dubljevic, Stevan
Powiązania:
https://bibliotekanauki.pl/articles/1849012.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
trajectory determination
pipeline inspection robot
pipeline feature
path reconstruction algorithm
Opis:
Geographic trajectory of a pipeline is important information for pipeline maintenance and leak detection. Although accurate trajectory of a ground pipeline usually can be directly measured by using global positioning system technology, it is much difficult to determine trajectory for an underground pipeline where global positioning system signal cannot be received. In this paper, a new method to determine trajectory for an underground pipeline by using a pipeline inspection robot is proposed. The robot is equipped with a low-cost inertial measurement unit and odometers. The kinematic model, measurement model and error propagation model are established for estimating position, velocity and attitude of the robot. The path reconstruction algorithm for the robot is proposed to improve accuracy of trajectory determination based on pipeline features. The experiment is given to illustrate that the position errors of the proposed method are less than 40% of that of the standard extended Kalman filter.
Źródło:
Metrology and Measurement Systems; 2021, 28, 3; 439-453
0860-8229
Pojawia się w:
Metrology and Measurement Systems
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Trajectory determination for pipelines using an inspection robot and pipeline features
Autorzy:
Zhang, Shuo
Dubljevic, Stevan
Powiązania:
https://bibliotekanauki.pl/articles/1849098.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
trajectory determination
pipeline inspection robot
pipeline feature
path reconstruction algorithm
Opis:
Geographic trajectory of a pipeline is important information for pipeline maintenance and leak detection. Although accurate trajectory of a ground pipeline usually can be directly measured by using global positioning system technology, it is much difficult to determine trajectory for an underground pipeline where global positioning system signal cannot be received. In this paper, a new method to determine trajectory for an underground pipeline by using a pipeline inspection robot is proposed. The robot is equipped with a low-cost inertial measurement unit and odometers. The kinematic model, measurement model and error propagation model are established for estimating position, velocity and attitude of the robot. The path reconstruction algorithm for the robot is proposed to improve accuracy of trajectory determination based on pipeline features. The experiment is given to illustrate that the position errors of the proposed method are less than 40% of that of the standard extended Kalman filter.
Źródło:
Metrology and Measurement Systems; 2021, 28, 3; 439-453
0860-8229
Pojawia się w:
Metrology and Measurement Systems
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
FSPL: A meta-learning approach for a filter and embedded feature selection pipeline
Autorzy:
Lazebnik, Teddy
Rosenfeld, Avi
Powiązania:
https://bibliotekanauki.pl/articles/2201020.pdf
Data publikacji:
2023
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
feature selection pipeline
meta learning
no free lunch
autoML
genetic algorithm
wybór funkcji
metauczenie
algorytm genetyczny
Opis:
There are two main approaches to tackle the challenge of finding the best filter or embedded feature selection (FS) algorithm: searching for the one best FS algorithm and creating an ensemble of all available FS algorithms. However, in practice, these two processes usually occur as part of a larger machine learning pipeline and not separately. We posit that, due to the influence of the filter FS on the embedded FS, one should aim to optimize both of them as a single FS pipeline rather than separately. We propose a meta-learning approach that automatically finds the best filter and embedded FS pipeline for a given dataset called FSPL. We demonstrate the performance of FSPL on n = 90 datasets, obtaining 0.496 accuracy for the optimal FS pipeline, revealing an improvement of up to 5.98 percent in the model’s accuracy compared to the second-best meta-learning method.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2023, 33, 1; 103--115
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies