- Tytuł:
- Coverings of Cubic Graphs and 3-Edge Colorability
- Autorzy:
- Plachta, Leonid
- Powiązania:
- https://bibliotekanauki.pl/articles/32083839.pdf
- Data publikacji:
- 2021-02-01
- Wydawca:
- Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
- Tematy:
-
uncolorable cubic graph
covering of graphs
voltage permutation graph
resistance
nowhere-zero 4-flow - Opis:
- Let \(h:\tilde{G}→G\) be a finite covering of 2-connected cubic (multi)graphs where G is 3-edge uncolorable. In this paper, we describe conditions under which \(\tilde{G}\) is 3-edge uncolorable. As particular cases, we have constructed regular and irregular 5-fold coverings \(f:\tilde{G}→G\) of uncolorable cyclically 4-edge connected cubic graphs and an irregular 5-fold covering \(g:\tilde{H}→H\) of uncolorable cyclically 6-edge connected cubic graphs. In [13], Steffen introduced the resistance of a subcubic graph, a characteristic that measures how far is this graph from being 3-edge colorable. In this paper, we also study the relation between the resistance of the base cubic graph and the covering cubic graph.
- Źródło:
-
Discussiones Mathematicae Graph Theory; 2021, 41, 1; 311-334
2083-5892 - Pojawia się w:
- Discussiones Mathematicae Graph Theory
- Dostawca treści:
- Biblioteka Nauki