Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "irregularity of graphs" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
The irregularity of graphs under graph operations
Autorzy:
Abdo, Hosam
Dimitrov, Darko
Powiązania:
https://bibliotekanauki.pl/articles/30148232.pdf
Data publikacji:
2014-05-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
irregularity of graphs
total irregularity of graphs
graph operations
Zagreb indices
Opis:
The irregularity of a simple undirected graph $G$ was defined by Albertson [5] as $irr(G) = ∑_{uv∈E(G)} |dG(u) − dG(v)|$, where $d_G(u)$ denotes the degree of a vertex $u ∈ V (G)$. In this paper we consider the irregularity of graphs under several graph operations including join, Cartesian product, direct product, strong product, corona product, lexicographic product, disjunction and symmetric difference. We give exact expressions or (sharp) upper bounds on the irregularity of graphs under the above mentioned operations
Źródło:
Discussiones Mathematicae Graph Theory; 2014, 34, 2; 263-278
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
On Total H-Irregularity Strength of the Disjoint Union of Graphs
Autorzy:
Ashraf, Faraha
López, Susana Clara
Muntaner-Batle, Francesc Antoni
Oshima, Akito
Bača, Martin
Semaničová-Feňovčíková, Andrea
Powiązania:
https://bibliotekanauki.pl/articles/32083832.pdf
Data publikacji:
2020-02-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
H -covering
H -irregular labeling
total H -irregularity strength
copies of graphs
union of graphs
Opis:
A simple graph G admits an H-covering if every edge in E(G) belongs to at least to one subgraph of G isomorphic to a given graph H. For the subgraph H ⊆ G under a total k-labeling we define the associated H-weight as the sum of labels of all vertices and edges belonging to H. The total k-labeling is called the H-irregular total k-labeling of a graph G admitting an H-covering if all subgraphs of G isomorphic to H have distinct weights. The total H-irregularity strength of a graph G is the smallest integer k such that G has an H-irregular total k-labeling. In this paper, we estimate lower and upper bounds on the total H-irregularity strength for the disjoint union of multiple copies of a graph and the disjoint union of two non-isomorphic graphs. We also prove the sharpness of the upper bounds.
Źródło:
Discussiones Mathematicae Graph Theory; 2020, 40, 1; 181-194
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies