Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "flood peaks" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Trend analysis of flood peaks in lower reaches of Satluj River, Himachal Pradesh, India
Autorzy:
Kumar, S.
Santosh, ---
Powiązania:
https://bibliotekanauki.pl/articles/970628.pdf
Data publikacji:
2015
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
flood peaks
mann-kendall test
satluj river basin
regression
trend analysis.
Opis:
Climate change arising from anthropogenic driven emissions of greenhouse gases has emerged as one of the most important environmental issues in the last two decades. One of the most significant potential consequences of climate change may be alteration in regional hydrological cycle and river flow regimes. Increased temperature is expected to increase the peak flows in snowfed rivers of Himalayas. The changing pattern of regional temperature on flood peaks deserves urgent and systematic attention over a basin which provides an insight view of historical trends. Lower reaches of Satluj River is selected for the present study. Testing the significance of observed trends in flood peaks has received a great attention recently, especially in connection with climate change. The data series available was 48 years (1967-2010). The records were subjected to trend analysis by using both non-parametric (Mann-Kendall test) and parametric (linear regression analysis) procedures. For better understanding of the observed trends, flood peaks were computed into standardised flood peak indices (SFPI). These standardised data series were plotted against time and the linear trends observed were represented graphically. The analysis of flood peaks at different observation stations in lower reaches of Satluj River showed a large variability in the trends and magnitudes. The trend analysis results of flood peaks and gauge heights indicate that the flood peaks at all sites i.e. Rampur, Suni and Kasol show increasing but statistically insignificant trends. The trends in gauge height at all sites are also showing increasing trend but Kasol is statistically significant at 95% confidence level. The fast melting of glaciers, incessant monsoon rainfall and the synchronisation of the discharge peaks are the main causes of river floods. The past flood peaks will help us to observe the frequency of occurrence of floods in certain region and to determine whether the flood peaks in the past have been same with that of the present or whether there is any deviation in the trend in relation to climate change. Such studies will help in designing mitigation and adaptation strategies towards extreme hydrological events.
Źródło:
International Letters of Natural Sciences; 2015, 46
2300-9675
Pojawia się w:
International Letters of Natural Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Flood frequency analysis for an ungauged Himalayan river basin using different methods: a case study of Modi Khola, Parbat, Nepal
Autorzy:
Acharya, Bibek
Joshi, Bisesh
Powiązania:
https://bibliotekanauki.pl/articles/1445122.pdf
Data publikacji:
2020
Wydawca:
Instytut Meteorologii i Gospodarki Wodnej - Państwowy Instytut Badawczy
Tematy:
return periods
ungauged basin
design flood
hydrologic data
probability distribution functions
annual maximum discharge
peaks above threshold
Opis:
Predicting flood discharges in the rivers of an ungauged basin is tedious because essential hydrological data is lacking. In mountainous countries like Nepal, the design of hydraulic structures in these steeply sloped rivers is of prime importance for flood control, as well as for electricity generation where hydraulic head is gained over short, steep reaches. This study illustrates a variety of approaches that can be used to perform flood frequency analysis of typical ungauged mountainous rivers, where discharge data are available from hydrologically similar catchments. The various methods are evaluated by comparing the goodness of fit of an array of hydrologic distribution functions. From each probability density function or regional empirical method, we predict the multi-year return periods for floods, information that is generally required to design the hydraulic structures. The analysis was done based on the annual maxima, peaks above threshold, and widely used regional empirical methods. This analysis was accomplished using the discharge data of Nayapul station near Jhapre Bagar collected from the Department of Hydrology and Meteorology, Government of Nepal, Kathmandu. The analysis and results of this study paved the way for the hydraulic design of water systems in the ungauged study region and demonstrated how the information acquired can be used for water resource management in catchments with similar hydrologic features.
Źródło:
Meteorology Hydrology and Water Management. Research and Operational Applications; 2020, 8, 2; 46-51
2299-3835
2353-5652
Pojawia się w:
Meteorology Hydrology and Water Management. Research and Operational Applications
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies