Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "feasible set" wg kryterium: Temat


Wyświetlanie 1-4 z 4
Tytuł:
More Results on The Smallest One-Realization of A Given Set II
Autorzy:
Diao, Kefeng
Lu, Fuliang
Zhao, Ping
Powiązania:
https://bibliotekanauki.pl/articles/31343431.pdf
Data publikacji:
2019-05-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
mixed hypergraph
feasible set
chromatic spectrum
gap
onerealization
Opis:
Let S be a finite set of positive integers. A mixed hypergraph ℋ is a onerealization of S if its feasible set is S and each entry of its chromatic spectrum is either 0 or 1. The minimum number of vertices, denoted by δ3(S), in a 3-uniform bi-hypergraph which is a one-realization of S was determined in [P. Zhao, K. Diao and F. Lu, More result on the smallest one-realization of a given set, Graphs Combin. 32 (2016) 835–850]. In this paper, we consider the minimum number of edges in a 3-uniform bi-hypergraph which already has the minimum number of vertices with respect of being a minimum bihypergraph that is one-realization of S. A tight lower bound on the number of edges in a 3-uniform bi-hypergraph which is a one-realization of S with δ3(S) vertices is given.
Źródło:
Discussiones Mathematicae Graph Theory; 2019, 39, 2; 473-487
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Note on the paper: interior proximal method for variational inequalities on non-polyhedral sets
Autorzy:
Kaplan, Alexander
Tichatschke, Rainer
Powiązania:
https://bibliotekanauki.pl/articles/729285.pdf
Data publikacji:
2010
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
variational inequalities
Bregman function
non-polyhedral feasible set
proximal point algorithm
Opis:
In this paper we clarify that the interior proximal method developed in [6] (vol. 27 of this journal) for solving variational inequalities with monotone operators converges under essentially weaker conditions concerning the functions describing the "feasible" set as well as the operator of the variational inequality.
Źródło:
Discussiones Mathematicae, Differential Inclusions, Control and Optimization; 2010, 30, 1; 51-59
1509-9407
Pojawia się w:
Discussiones Mathematicae, Differential Inclusions, Control and Optimization
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
K3-WORM Colorings of Graphs: Lower Chromatic Number and Gaps in the Chromatic Spectrum
Autorzy:
Bujtás, Csilla
Tuza, Zsolt
Powiązania:
https://bibliotekanauki.pl/articles/31340789.pdf
Data publikacji:
2016-08-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
WORM coloring
lower chromatic number
feasible set
gap in the chromatic spectrum
Opis:
A K3-WORM coloring of a graph G is an assignment of colors to the vertices in such a way that the vertices of each K3-subgraph of G get precisely two colors. We study graphs G which admit at least one such coloring. We disprove a conjecture of Goddard et al. [Congr. Numer. 219 (2014) 161-173] by proving that for every integer k ≥ 3 there exists a K3-WORM-colorable graph in which the minimum number of colors is exactly k. There also exist K3-WORM colorable graphs which have a K3-WORM coloring with two colors and also with k colors but no coloring with any of 3, . . ., k − 1 colors. We also prove that it is NP-hard to determine the minimum number of colors, and NP-complete to decide k-colorability for every k ≥ 2 (and remains intractable even for graphs of maximum degree 9 if k = 3). On the other hand, we prove positive results for d-degenerate graphs with small d, also including planar graphs.
Źródło:
Discussiones Mathematicae Graph Theory; 2016, 36, 3; 759-772
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Color-bounded hypergraphs, V: host graphs and subdivisions
Autorzy:
Bujtás, Csilla
Tuza, Zsolt
Voloshin, Vitaly
Powiązania:
https://bibliotekanauki.pl/articles/743863.pdf
Data publikacji:
2011
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
mixed hypergraph
color-bounded hypergraph
vertex coloring
arboreal hypergraph
hypertree
feasible set
host graph
edge subdivision
Opis:
A color-bounded hypergraph is a hypergraph (set system) with vertex set X and edge set = {E₁,...,Eₘ}, together with integers $s_i$ and $t_i$ satisfying $1 ≤ s_i ≤ t_i ≤ |E_i|$ for each i = 1,...,m. A vertex coloring φ is proper if for every i, the number of colors occurring in edge $E_i$ satisfies $s_i ≤ |φ(E_i)| ≤ t_i$. The hypergraph ℋ is colorable if it admits at least one proper coloring.
We consider hypergraphs ℋ over a "host graph", that means a graph G on the same vertex set X as ℋ, such that each $E_i$ induces a connected subgraph in G. In the current setting we fix a graph or multigraph G₀, and assume that the host graph G is obtained by some sequence of edge subdivisions, starting from G₀.
The colorability problem is known to be NP-complete in general, and also when restricted to 3-uniform "mixed hypergraphs", i.e., color-bounded hypergraphs in which $|E_i| = 3$ and $1 ≤ s_i ≤ 2 ≤ t_i ≤ 3$ holds for all i ≤ m. We prove that for every fixed graph G₀ and natural number r, colorability is decidable in polynomial time over the class of r-uniform hypergraphs (and more generally of hypergraphs with $|E_i| ≤ r$ for all 1 ≤ i ≤ m) having a host graph G obtained from G₀ by edge subdivisions. Stronger bounds are derived for hypergraphs for which G₀ is a tree.
Źródło:
Discussiones Mathematicae Graph Theory; 2011, 31, 2; 223-238
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies