Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "dichromatic number" wg kryterium: Temat


Wyświetlanie 1-4 z 4
Tytuł:
The Star Dichromatic Number
Autorzy:
Hochstättler, Winfried
Steiner, Raphael
Powiązania:
https://bibliotekanauki.pl/articles/32361737.pdf
Data publikacji:
2022-02-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
dichromatic number
star chromatic number
circular dichromatic number
Opis:
We introduce a new notion of circular colourings for digraphs. The idea of this quantity, called star dichromatic number $ \vec{\chi}^\ast (D) $ of a digraph $D$, is to allow a finer subdivision of digraphs with the same dichromatic number into such which are “easier” or “harder” to colour by allowing fractional values. This is related to a coherent notion for the vertex arboricity of graphs introduced in [G. Wang, S. Zhou, G. Liu and J. Wu, Circular vertex arboricity, J. Discrete Appl. Math. 159 (2011) 1231–1238] and resembles the concept of the star chromatic number of graphs introduced by Vince in [15] in the framework of digraph colouring. After presenting basic properties of the new quantity, including range, simple classes of digraphs, general inequalities and its relation to integer counterparts as well as other concepts of fractional colouring, we compare our notion with the notion of circular colourings for digraphs introduced in [D. Bokal, G. Fijavz, M. Juvan, P.M. Kayll and B. Mohar, The circular chromatic number of a digraph, J. Graph Theory 46 (2004) 227–224] and point out similarities as well as differences in certain situations. As it turns out, the star dichromatic number shares all positive characteristics with the circular dichromatic number of Bokal et al., but has the advantage that it depends on the strong components of the digraph only, while the addition of a dominating source raises the circular dichromatic number to the ceiling. We conclude with a discussion of the case of planar digraphs and point out some open problems.
Źródło:
Discussiones Mathematicae Graph Theory; 2022, 42, 1; 277-298
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The Dichromatic Number of Infinite Families of Circulant Tournaments
Autorzy:
Javier, Nahid
Llano, Bernardo
Powiązania:
https://bibliotekanauki.pl/articles/31342132.pdf
Data publikacji:
2017-02-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
tournament
dichromatic number
vertex-critical r -dichromatic tournament
Opis:
The dichromatic number $dc(D)$ of a digraph $D$ is defined to be the minimum number of colors such that the vertices of $D$ can be colored in such a way that every chromatic class induces an acyclic subdigraph in $D$. The cyclic circulant tournament is denoted by $ T= \vec{C}_{2n+1}(1,2,…,n) $, where $ V (T) = \mathbb{ℤ}_{2n+1}$ and for every jump $ j \in {1, 2, . . ., n} $ there exist the arcs $ (a, a + j)$ for every $ a \in \mathbb{Z}_{2n+1} $. Consider the circulant tournament $ \vec{C}_{2n+1} 〈k〉 $ obtained from the cyclic tournament by reversing one of its jumps, that is, $ \vec{C}_{2n+1} 〈k〉 $ has the same arc set as $ \vec{C}_{2n+1} (1,2,…,n) $ except for $j = k$ in which case, the arcs are $(a, a − k)$ for every $ a \in \mathbb{Z}_{2n+1} $. In this paper, we prove that $ dc (\vec{C}_{2n+1} 〈k〉 ) \in {2,3,4} $ for every $ k \in {1, 2, . . ., n} $. Moreover, we classify which circulant tournaments $ \vec{C}_{2n+1} 〈k〉 $ are vertex-critical $r$-dichromatic for every $ k \in {1, 2, . . ., n} $ and $ r \in {2, 3, 4} $. Some previous results by Neumann-Lara are generalized.
Źródło:
Discussiones Mathematicae Graph Theory; 2017, 37, 1; 221-238
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Dichromatic number, circulant tournaments and Zykov sums of digraphs
Autorzy:
Neumann-Lara, Víctor
Powiązania:
https://bibliotekanauki.pl/articles/743771.pdf
Data publikacji:
2000
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
digraphs
dichromatic number
vertex-critical
Zykov sums
tournaments
circulant
covering numbers in hypergraphs
Opis:
The dichromatic number dc(D) of a digraph D is the smallest number of colours needed to colour the vertices of D so that no monochromatic directed cycle is created. In this paper the problem of computing the dichromatic number of a Zykov-sum of digraphs over a digraph D is reduced to that of computing a multicovering number of an hypergraph H₁(D) associated to D in a natural way. This result allows us to construct an infinite family of pairwise non isomorphic vertex-critical k-dichromatic circulant tournaments for every k ≥ 3, k ≠ 7.
Źródło:
Discussiones Mathematicae Graph Theory; 2000, 20, 2; 197-207
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Game-Perfect Semiorientations of Forests
Autorzy:
Andres, Stephan Dominique
Charpentier, Clément
Fong, Wai Lam
Powiązania:
https://bibliotekanauki.pl/articles/32361719.pdf
Data publikacji:
2022-05-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
game chromatic number
game-perfect digraph
forest
dichromatic number
game-perfect graph
forbidden induced subdigraph
Opis:
We consider digraph colouring games where two players, Alice and Bob, alternately colour vertices of a given digraph D with a colour from a given colour set in a feasible way. The game ends when such move is not possible any more. Alice wins if every vertex is coloured at the end, otherwise Bob wins. The smallest size of a colour set such that Alice has a winning strategy is the game chromatic number of D. The digraph D is game-perfect if, for every induced subdigraph H of D, the game chromatic number of H equals the size of the largest symmetric clique of H. In the strong game, colouring a vertex is feasible if its colour is different from the colours of its in-neighbours. In the weak game, colouring a vertex is feasible unless it creates a monochromatic directed cycle. There are six variants for each game, which specify the player who begins and whether skipping is allowed for some player. For all six variants of both games, we characterise the class of game-perfect semiorientations of forests by a set of forbidden induced subdigraphs and by an explicit structural description.
Źródło:
Discussiones Mathematicae Graph Theory; 2022, 42, 2; 501-534
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies