- Tytuł:
- On the α-Spectral Radius of Uniform Hypergraphs
- Autorzy:
-
Guo, Haiyan
Zhou, Bo - Powiązania:
- https://bibliotekanauki.pl/articles/31551887.pdf
- Data publikacji:
- 2020-05-01
- Wydawca:
- Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
- Tematy:
-
adjacency tensor
uniform hypergraph
extremal hypergraph
α-spectral radius
α-Perron vector - Opis:
- For \(0 ≤ \alpha < 1\) and a uniform hypergraph $G$, the \(\alpha\)-spectral radius of $G$ is the largest $H$-eigenvalue of \(\alpha\mathcal{D}(G)+(1−\alpha)\mathcal{A}(G)\), where \(\mathcal{D}(G)\) and \(\mathcal{A}(G)\) are the diagonal tensor of degrees and the adjacency tensor of $G$, respectively. We give upper bounds for the \(\alpha\)-spectral radius of a uniform hypergraph, propose some transformations that increase the \(\alpha\)-spectral radius, and determine the unique hypergraphs with maximum \(\alpha\)-spectral radius in some classes of uniform hypergraphs.
- Źródło:
-
Discussiones Mathematicae Graph Theory; 2020, 40, 2; 559-575
2083-5892 - Pojawia się w:
- Discussiones Mathematicae Graph Theory
- Dostawca treści:
- Biblioteka Nauki