Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "IoT cryptography" wg kryterium: Temat


Wyświetlanie 1-4 z 4
Tytuł:
Lightweight cryptographic algorithm based on trigonometry, dedicated on encryption of short messages
Autorzy:
Maleszewski, Wiesław
Powiązania:
https://bibliotekanauki.pl/articles/23313488.pdf
Data publikacji:
2022
Wydawca:
Politechnika Gdańska
Tematy:
IoT cryptography
lightweight cryptography
flexible cryptography
Opis:
The IoT technology is currently used in many areas and marked by growing popularity. On the one hand, the IoT makes our lives easier, on the other hand, it presents challenges in terms of security and privacy protection. An IoT infrastructure is characterized by a high level of threats due to, inter alia, numerous technical barriers that make it difficult to use conventional methods to protect information. The aim of this paper is to present a symmetric coding algorithm based on algebraic groups generated by specific trigonometric curves. The algorithm is dedicated to short data sequences transmitted by devices with limited computing power.
Źródło:
TASK Quarterly. Scientific Bulletin of Academic Computer Centre in Gdansk; 2022, 26, 3
1428-6394
Pojawia się w:
TASK Quarterly. Scientific Bulletin of Academic Computer Centre in Gdansk
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The arithmetic of the topologists sine curve in cryptographic systems dedicated to IoT devices
Autorzy:
Maleszewski, Wiesław
Powiązania:
https://bibliotekanauki.pl/articles/1954462.pdf
Data publikacji:
2014
Wydawca:
Politechnika Gdańska
Tematy:
IoT cryptography
secure communication
topologist’s sine curve
unconventional arithmetic
Opis:
When observing the modern world, we can see the dynamic development of new technologies, among which a special place, both owing to the potential and the threats is occupiedby the Internet of Things which penetrates almost all areas of our life. It is assumed that the IoT technology makes our life easier, however, it poses many challenges concerning the protection of the security of information transmission and, therefore, our privacy. One of the main goals of the paper is to present a new unconventional arithmetic based onthe transcendental curve dedicated to the cryptographic systems that protect the transmission of short messages. The use of this arithmetic may develop the possibilities of protecting short sequences of data generated by devices with limited computational power. Examples of such devices include the ubiquitously used battery powered sensors, the task of which is to collectand transmit data which very often comprises concise information. Another goal is to present the possibility of using the developed arithmetic in cryptographic algorithms.
Źródło:
TASK Quarterly. Scientific Bulletin of Academic Computer Centre in Gdansk; 2019, 23, 1; 29-47
1428-6394
Pojawia się w:
TASK Quarterly. Scientific Bulletin of Academic Computer Centre in Gdansk
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
LEES: a Hybrid Lightweight Elliptic ElGamal-Schnorr-Based Cryptography for Secure D2D Communications
Autorzy:
Ambareen, Javeria
Prabhakar, M.
Ara, Tabassum
Powiązania:
https://bibliotekanauki.pl/articles/1839354.pdf
Data publikacji:
2021
Wydawca:
Instytut Łączności - Państwowy Instytut Badawczy
Tematy:
5G networks
authentication
D2D communication
IoT
lightweight cryptography
Opis:
Device-to-device (D2D) communications in 5G networks will provide greater coverage, as devices will be acting as users or relays without any intermediate nodes. However, this arrangement poses specific security issues, such as rogue relays, and is susceptible to various types of attacks (impersonation, eavesdropping, denial-of-service), due to the fact that communication occurs directly. It is also recommended to send fewer control messages, due to authenticity- and secrecy related prevailing requirements in such scenarios. Issues related to IoT applications need to be taken into consideration as well, as IoT networks are inherently resource-constrained and susceptible to various attacks. Therefore, novel signcryption algorithms which combine encryption with digital signatures are required to provide secure 5G IoT D2D communication scenarios in order to protect user information and their data against attacks, without simultaneously increasing communication costs. In this paper, we propose LEES, a secure authentication scheme using public key encryption for secure D2D communications in 5G IoT networks. This lightweight solution is a hybrid of elliptic curve ElGamal-Schnorr algorithms. The proposed scheme is characterized by low requirements concerning computation cost, storage and network bandwidth, and is immune to security threats, thus meeting confidentiality, authenticity, integrity and non-repudiation-related criteria that are so critical for digital signature schemes. It may be used in any 5G IoT architectures requiring enhanced D2D security and performance.
Źródło:
Journal of Telecommunications and Information Technology; 2021, 2; 24-30
1509-4553
1899-8852
Pojawia się w:
Journal of Telecommunications and Information Technology
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
On-chip current-mode approach to thwart CPA attacks in CMOS nanometer technology
Autorzy:
Bellizia, D.
Scotti, G.
Trifiletti, A.
Powiązania:
https://bibliotekanauki.pl/articles/398086.pdf
Data publikacji:
2016
Wydawca:
Politechnika Łódzka. Wydział Mikroelektroniki i Informatyki
Tematy:
IoT
internet of things (IoT)
Power Analysis Attacks
smart card
CPA
current-mode
Side Channel Analysis
CMOS
Cryptography
PRESENT
Internet rzeczy
karta inteligentna
moduły prądowe
kryptografia
Opis:
The protection of information that reside in smart devices like IoT nodes is becoming one of the main concern in modern design. The possibility to mount a non-invasive attack with no expensive equipment, such as a Power Analysis Attack (PAA), remarks the needs of countermeasures that aims to thwart attacks exploiting power consumption. In addition to that, designers have to deal with demanding requirements, since those smart devices require stringent area and energy constraints. In this work, a novel analog-level approach to counteract PAA is presented, taking benefits of the current-mode approach. The kernel of this approach is that the information leakage exploited in a PAA is leaked through current absorption of a cryptographic device. Thanks to an on-chip measuring of the current absorbed by the cryptographic logic, it is possible to generate an error signal. Throughout a current-mode feedback mechanism, the data-dependent component of the overall consumption can be compensated, making the energy requirement constant at any cycle and thwarting the possibility to recover sensible information. Two possible implementations of the proposed approach are presented in this work and their effectiveness has been evaluated using a 40nm CMOS design library. The proposed approach is able to increase the Measurements to Disclosure (MTD) of at least three orders of magnitude, comparing to the unprotected implementation. It has to be pointed out that the on-chip current-mode suppressor, based on the proposed approach, is able to provide a very good security performance, while requiring a very small overhead in terms of silicon area (xl.007) and power consumption (xl.07).
Źródło:
International Journal of Microelectronics and Computer Science; 2016, 7, 4; 147-156
2080-8755
2353-9607
Pojawia się w:
International Journal of Microelectronics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies