Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Cainozoic" wg kryterium: Temat


Wyświetlanie 1-4 z 4
Tytuł:
Litogeneza i sedymentacja osadów kenozoiku w profilu otworu wiertniczego Suchostruga (niecka warszawska)
Lithogenesis and sedimentation of Cainozoic deposits in the Suchostruga borehole section (Warsaw Trough)
Autorzy:
Kenig, K.
Powiązania:
https://bibliotekanauki.pl/articles/2062117.pdf
Data publikacji:
2012
Wydawca:
Państwowy Instytut Geologiczny – Państwowy Instytut Badawczy
Tematy:
litologia
litogeneza
kenozoik
Niecka Warszawska
lithology
lithogenesis
Cainozoic
Warsaw Trough
Opis:
Otwór wiertniczy Suchostruga znajduje się około 15 km na wschód od Mszczonowa i z geologicznego punktu widzenia leży w niecce warszawskiej, stanowiącej część jednostki tektonicznej – synklinorium brzeżnego. Jest jednym z sześciu otworów badawczych na arkuszu Mszczonów Szczegółowej Mapy Geologicznej Polski (SMGP) w skali 1:50 000, ale jako jedyny udokumentował pełen profil osadów kenozoiku o łącznej miąższości 284,6 m. Na podstawie wyników analiz uziarnienia, składu mineralnego frakcji ciężkiej i lekkiej oraz składu petrograficznego żwirów wykazano różnice litologiczne i facjalne w osadach powstających w odmiennych basenach sedymentacyjnych nawet tego samego wieku, rozpatrywanych na podstawie osadów graniczących ze sobą w tym jednym profilu wiertniczym. Dodatkowym potwierdzeniem tego wnioskowania są wyniki analiz palinologicznych i mikropaleontologicznych. Badane osady powstawały w środowisku morskim i lądowym. Odniesiono je do jednostek chronostratygraficznych paleocenu, eocenu, miocenu (pliocenu) oraz czwartorzędu. Profil Suchostruga można uznać za profil odniesienia – hipostratotyp o zasięgu regionalnym na obszarze środkowej Polski, a przynajmniej dla niecki warszawskiej.
The Suchostruga borehole was drilled approximately 15 km east of Mszczonów. From the geologic point of view, it lies in the Warsaw Trough that is part of a tectonic unit called the Marginal Trough. The borehole is one of six reconnaissance wells drilled in the Mszczonów Sheet of the SMGP (Detailed Geological Map of Poland), scale 1:50 000. However, this is the only borehole that has documented a complete Cainozoic section, 284.6 m thick. Lithological and facies differences between deposits that accumulated in different sedimentary basins of the same age, considered based on adjacent sediments in this single section have been proved based on the grain-size analysis, composition of heavy and light minerals and petrographic composition of gravels. Additional confirmation of the inference is the results of palynological and micropaleontological investigations. The sediments were deposited in marine and terrestrial environments. Finally, they have been correlated to the chronostratigraphic units of the Paleocene, Eocene, Miocene (Pliocene) and Quaternary. That is why the Suchostruga section can be considered a reference section for central Poland – a regional-scale hypostratotype, at least for the Warsaw Trough.
Źródło:
Biuletyn Państwowego Instytutu Geologicznego; 2012, 453; 81--95
0867-6143
Pojawia się w:
Biuletyn Państwowego Instytutu Geologicznego
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Analiza tempa depozycji materiału detrytycznego w basenach sedymentacyjnych zachodnich Karpat zewnętrznych jako wskaźnik aktywności tektonicznej ich obszarów źródłowych
Tectonic activity of sediment source areas for theWestern Outer Carpathian basins—constraints from analysis of sediment deposition rate
Autorzy:
Poprawa, P.
Malata, T.
Oszczypko, N.
Słomka, T.
Golonka, J.
Krobicki, M.
Powiązania:
https://bibliotekanauki.pl/articles/2074424.pdf
Data publikacji:
2006
Wydawca:
Państwowy Instytut Geologiczny – Państwowy Instytut Badawczy
Tematy:
basen sedymentacyjny
depozycja
aktywność tektoniczna
Karpaty Zachodnie
Western Outer Carpathians
Mesozoic
Cainozoic
sediment source area
deposition rate
Opis:
Analysis of deposition rate were performed for synthetic sections, representing the upper Jurassic to lower Miocene sedimentary fill of the Western Outer Carpathian (WOC) basins. Calculated deposition rates differs in a range of a few orders of magnitude. During Tithonian to Berriasian-early Valanginian tectonic activity of the source areas supplying the Silesian Basin was related to the mechanism of syn-rift extensional elevation and erosion of horsts. General decay of source area activity in Valanginian to Cenomanian time was caused by regional post-rift thermal sag of the WOC. The Barremian to Albian phase of compressional uplift of the source area located north of the WOC lead to increase of deposition rate in some zones of the WOC basin. In Turonian to Paleocene time thick-skinned collision and thrusting took place south and south-west (in the recent coordinates) of the Silesian Basin causing very rapid, diachronous uplift of this zone, referred to as Silesian Ridge, resulting with high deposition rate in the Silesian Basin. At that time supply of sediments to the Magura Basin from south was relatively low, and the Pieniny Klipen Belt was presumably zone of transfer of these sediments. In Eocene the zone of collisional shortening in the WOC system was relocated to the south, causing rapid uplift of the Southern Magura Ridge and intense supply of detritus to the Magura Basin. Thrusting in the Southern Magura Ridge and collisional compression resulted with flexural bending of its broad foreland, being the reason for decrease of activity of both the Silesian Ridge and the source area at the northern rim of the WOC. The Eocene evolution of the Silesian Ridge is interpreted as controlled by both episodic tectonic activity and eustatic sea level changes. Contrasting development of the Southern Magura Ridge and the northern rim of Central Carpathians during Eocene stands for a palaeographic distance between the two domains at that time. During Oligocene and early Miocene a significant increase of deposition rates is observed for the basin in which sediments of the Krosno beds were deposited. This was caused by tectonic uplift of the source at the northern rim of the WOC, as well as the Silesian Ridge and the partly formed Magura nappe. The Miocene molasse of the WOC foredeep basin is characterised by notably higher maximum deposition rates than ones calculated for the flysch deposits of the WOC.
Źródło:
Przegląd Geologiczny; 2006, 54, 10; 878-887
0033-2151
Pojawia się w:
Przegląd Geologiczny
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Model późnojurajsko-wczesnomioceńskiej ewolucji tektonicznej zachodnich Karpat zewnętrznych
Model of late Jurassic to early Miocene tectonic evolution of the Western Outer Carpathians
Autorzy:
Poprawa, P.
Malata, T.
Powiązania:
https://bibliotekanauki.pl/articles/2074481.pdf
Data publikacji:
2006
Wydawca:
Państwowy Instytut Geologiczny – Państwowy Instytut Badawczy
Tematy:
basen sedymentacyjny
obszar źródłowy
tektonika
Karpaty zewnętrzne
miocen
jura
Outer Carpathians
Mesozoic
Cainozoic
sedimentary basin
source area
tectonics
Opis:
At the end of the Jurassic and beginning of the Cretaceous in the Western Outer Carpathians (WOC) rift-related extension led to development of: the deep marine grabens with flysch and pelagic sedimentation, the zones of shallow marine carbonate sedimentation, and the elevated horsts, supplying the basins with sediments. Transition to the Early Cretaceous and Cenomanian post-rift thermal sag stage was responsible for a general ceasing of tectonic activity in the source areas and unification of the previous sub-basins. In Barremian–Albian time, the northern, external sources for sediments were uplifted due to compression, presumably caused by the orogenic collision in the Middle and Outer Dacides and/or collision related to subduction of the Penninic Ocean. The Silesian Ridge, rapidly elevated and eroded during Late Cretaceous and Paleocene, is interpreted here as an active thick-skinned thrust belt. Nappe stacking in that area and stress transmission towards foreland caused flexural subsidence of the proximal zone (the inner Silesian Basin) and uplift in the distal zone (including: the outer Silesian Basin, the Subsilesian facies zone, the Skole Basin and the northern sediment source areas). The Eocene alternating shallow marine deposition in the Silesian Ridge and its exposition for erosion is interpreted as controlled by both eustatic sea level changes and episodic tectonic activity. At this time new thick-skinned thrust belt developed south of the Magura Basin, which supplied vast amount of detritus for the Magura Beds. The Eocene tectonic shortening and deformations in the Southern Magura Ridge and development of the accretionary prism caused flexural bending of its broad foreland, subsidence and relative facies unification of the basins and decrease of activity of the source areas located north of the Magura Basin. The Oligocene progress of plates/microplates convergence and relocation of the zone of tectonic shortening towards the north led to compressional uplift of the source areas located both to the north of the WOC basins and to the south of the Silesian facies zone, the later composed of crystalline basement, as well as sediments of the Magura Unit. That sources supplied with detritus the Upper Oligocene–Llower Miocene Krosno Beds, being a diachronic continuation of synorogenic deposition of the Magura Beds. During the Late Cretaceous–Paleogene–Early Miocene, an important tectonic shortening across the WOC took place, accommodated mainly in the source areas. This indicates that the palaeogeographic relationships between the Silesian Basin, the Magura Basin and the Central Carpathian Paleogene Basin were changing during the Cretaceous and Cainozoic. In the time span of Albian to Oligocene in the zone palaeogeographically located between the Magura Basin and the Central Carpathians three separate source areas were active, each characterized by a different geological setting. These sources were replacing each other in time, suggesting significant collisional and/or strike slip reorganisation of the zone during that period. The collision of the WOC evolved in time from thick-skinned mode during the Late Cretaceous–Paleogene to thin-skinned one during the Middle Miocene.
Źródło:
Przegląd Geologiczny; 2006, 54, 12; 1066-1080
0033-2151
Pojawia się w:
Przegląd Geologiczny
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Taxonomic implications of the residual colour patterns of ampullinid gastropods and their contribution to the discrimination from naticids
Autorzy:
Caze, B.
Merle, D.
Le Meur, M.
Pacaud, J.-M.
Ledon, D.
Sain Martin, J.-P.
Powiązania:
https://bibliotekanauki.pl/articles/20897.pdf
Data publikacji:
2011
Wydawca:
Polska Akademia Nauk. Instytut Paleobiologii PAN
Tematy:
taxonomy
residual colour pattern
ampullinid gastropod
gastropod
contribution
discrimination
naticid
Ampullinidae
Naticidae
shell
evolution
Cainozoic
Europe
Ampullina
Globularia
Crommium
Amaurellina
Pachycrommium
Amauropsina
Ampullonatica
Eocernina
Ampullinopsis
Vanikoropsis
Pictavia
Ampullospira
Deshayesia
Cernina
Opis:
The diversity of residual colour patterns is revealed for the first time in the European fossil Ampullinidae. The colour patterns were studied under Ultraviolet (UV) light in approximately 3100 specimens belonging to 83 species, 12 genera (Ampullina, Globularia, Crommium, Amaurellina, Pachycrommium, Amauropsina, Ampullonatica, Eocernina, Ampullinopsis, Vanikoropsis, Pictavia, and Ampullospira) and three subgenera (Globularia, Deshayesia, and Cernina within the genus Globularia). Forty−six Cainozoic species revealed residual colour patterns and 29 of them, belonging to six genera (Ampullina, Globularia, Crommium, Amaurellina, Pachycrommium, Amauropsina), are described herein as examples representing the entire diversity of the encountered colour patterns. These patterns are most diverse during the Middle Eocene coincident with the period of highest taxonomic diversity of the Ampullinidae. Four basic classes, regarded as containing possible homologous colour patterns in terms of pigments incorporation modalities, are proposed. Class I, a fluorescent wide diffuse area or spiral stripes, occurs in most of the species, while the three others are more peculiar. Class II, fluorescent axial zigzagging stripes, Class III, fluorescent axial to slightly opisthocline stripes or segments, and Class IV, fluorescent patches forming axial segments by coalescence, allow an easy distinction between the genera Globularia, Pachycrommium, and three peculiar species of Ampullina. The bauplan of the colour patterns revealed in Globularia is very similar to that of the single extant species, Globularia (Cernina) fluctuata. This supports the view of previous authors who classified them in the same genus. Furthermore, at the family level, the peculiar residual patterns belonging to classes II, III, and IV have not been observed in naticid gastropods. Thus our results for the Cainozoic fossil record are consistent with the conclusions based on anatomy and feeding habits, namely that ampullinid gastropods, regarded for a long time as belonging to the family Naticidae, constitute a family apart.
Źródło:
Acta Palaeontologica Polonica; 2011, 56, 2
0567-7920
Pojawia się w:
Acta Palaeontologica Polonica
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies