Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "3D model recognition" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
CAD models clustering with machine learning
Autorzy:
Machalica, Dawid
Matyjewski, Marek
Powiązania:
https://bibliotekanauki.pl/articles/139503.pdf
Data publikacji:
2019
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
3D shape matching
3D shape retrieval
3D model recognition
3D shape
content-based retrieval
machine learning
dopasowanie kształtu 3D
pobieranie kształtu 3D
rozpoznawanie modeli 3D
kształt 3D
pobieranie oparte na treści
uczenie maszynowe
Opis:
Similarity assessment between 3D models is an important problem in many fields including medicine, biology and industry. As there is no direct method to compare 3D geometries, different model representations (shape signatures) are developed to enable shape description, indexing and clustering. Even though some of those descriptors proved to achieve high classification precision, their application is often limited. In this work, a different approach to similarity assessment of 3D CAD models was presented. Instead of focusing on one specific shape signature, 45 easy-to-extract shape signatures were considered simultaneously. The vector of those features constituted an input for 3 machine learning algorithms: the random forest classifier, the support vector classifier and the fully connected neural network. The usefulness of the proposed approach was evaluated with a dataset consisting of over 1600 CAD models belonging to 9 separate classes. Different values of hyperparameters, as well as neural network configurations, were considered. Retrieval accuracy exceeding 99% was achieved on the test dataset.
Źródło:
Archive of Mechanical Engineering; 2019, LXVI, 2; 133-152
0004-0738
Pojawia się w:
Archive of Mechanical Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Multimodal face recognition method with two-dimensional hidden Markov model
Autorzy:
Bobulski, J.
Powiązania:
https://bibliotekanauki.pl/articles/201711.pdf
Data publikacji:
2017
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
pattern recognition
biometrics
3D face recognition
hidden Markov model
rozpoznawanie wzorców
biometria
rozpoznawanie twarzy 3D
ukryty model Markowa
Opis:
The paper presents a new solution for the face recognition based on two-dimensional hidden Markov models. The traditional HMM uses one-dimensional data vectors, which is a drawback in the case of 2D and 3D image processing, because part of the information is lost during the conversion to one-dimensional features vector. The paper presents a concept of the full ergodic 2DHMM, which can be used in 2D and 3D face recognition. The experimental results demonstrate that the system based on two dimensional hidden Markov models is able to achieve a good recognition rate for 2D, 3D and multimodal (2D+3D) face images recognition, and is faster than ICP method.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2017, 65, 1; 121-128
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies