Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Zhang, Yingjie" wg kryterium: Autor


Wyświetlanie 1-2 z 2
Tytuł:
Bearing fault detection and diagnosis based on densely connected convolutional networks
Autorzy:
Niyongabo, Julius
Zhang, Yingjie
Ndikumagenge, Jérémie
Powiązania:
https://bibliotekanauki.pl/articles/2105995.pdf
Data publikacji:
2022
Wydawca:
Politechnika Białostocka. Oficyna Wydawnicza Politechniki Białostockiej
Tematy:
bearing
deep learning
machine learning
transfer learning
fault detection
fault diagnosis
CWRU dataset
Opis:
Rotating machines are widely used in today’s world. As these machines perform the biggest tasks in industries, faults are naturally observed on their components. For most rotating machines such as wind turbine, bearing is one of critical components. To reduce failure rate and increase working life of rotating machinery it is important to detect and diagnose early faults in this most vulner-able part. In the recent past, technologies based on computational intelligence, including machine learning (ML) and deep learning (DL), have been efficiently used for detection and diagnosis of bearing faults. However, DL algorithms are being increasingly favoured day by day because of their advantages of automatically extracting features from training data. Despite this, in DL, adding neural layers reduces the training accuracy and the vanishing gradient problem arises. DL algorithms based on convolutional neural networks (CNN) such as DenseNet have proved to be quite efficient in solving this kind of problem. In this paper, a transfer learning consisting of fine-tuning DenseNet-121 top layers is proposed to make this classifier more robust and efficient. Then, a new intelligent model inspired by DenseNet-121 is designed and used for detecting and diagnosing bearing faults. Continuous wavelet transform is applied to enhance the dataset. Experimental results obtained from analyses employing the Case Western Reserve University (CWRU) bearing dataset show that the proposed model has higher diagnostic performance, with 98% average accuracy and less complexity.
Źródło:
Acta Mechanica et Automatica; 2022, 16, 2; 130--135
1898-4088
2300-5319
Pojawia się w:
Acta Mechanica et Automatica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Research on electric vehicle charging load prediction and charging mode optimization
Autorzy:
Zhang, Zhiyan
Shi, Hang
Zhu, Ruihong
Zhao, Hongfei
Zhu, Yingjie
Powiązania:
https://bibliotekanauki.pl/articles/1841299.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
electric vehicles
Monte Carlo
wavelet neural network
charging load
pojazdy elektryczne
sieć neuronowa falkowa
Opis:
To reduce the influence of the disorderly charging of electric vehicles (EVs) on the grid load, the EV charging load and charging mode are studied in this paper. First, the distribution of EV charging capacity and state of charge (SOC) feature quantity are analyzed, and their probability density function is solved. It is verified that both EV charging capacity and SOC obey the skew-normal distribution. Second, considering the space-time distribution characteristics of the EV charging load, a method for charging load prediction based on a wavelet neural network is proposed, and compared with the traditional BP neural network, the prediction results show that the error of the wavelet neural network is smaller, and the effectiveness of the wavelet neural network prediction is verified. The optimization objective function with the lowest user costs is established, and the constraint conditions are determined, so the orderly charging behavior is simulated by the Monte Carlo method. Finally, the influence of charging mode optimization on power grid operation is analyzed, and the result shows that the effectiveness of the charging optimization model is verified.
Źródło:
Archives of Electrical Engineering; 2021, 70, 2; 399-414
1427-4221
2300-2506
Pojawia się w:
Archives of Electrical Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies