Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Wińska, K." wg kryterium: Autor


Wyświetlanie 1-4 z 4
Tytuł:
Naturalne hydroksy- i chlorolaktony terpenoidowe : ich występowanie i właściwości
Natural terpenoid hydroxyand chlorolactones : their occurrence and properties
Autorzy:
Grabarczyk, M.
Wińska, K.
Mączka, W.
Powiązania:
https://bibliotekanauki.pl/articles/172249.pdf
Data publikacji:
2014
Wydawca:
Polskie Towarzystwo Chemiczne
Tematy:
hydroksylaktony
chlorolaktony
aktywność biologiczna
hydroxylactones
chlorolactones
biological activity
Opis:
The world around us is composed of a variety of organic compounds that form the animal and plant species. One of the larger groups amongst them are terpenoid compounds, either the structurally simplest monoterpenoids, or sesquiterpenoids containing several atoms or even di- and triterpenoids composed of several carbon atoms. Many of these compounds contain lactone moiety in their structure [1–27]. Equally often, a component of their structure is a hydroxyl group [1–23]. Sometimes, the structural element can also be a halogen atom [24–27]. Many of the hydroxylactones exhibit interesting biological properties, such as antimicrobial (Fig. 1, 2, 12, 13), [2, 3, 19, 21], cytotoxic (Fig. 4, 6, 8), [8, 12, 14], anti-inflammatory (Fig. 1, 4, 11, 14), [3, 9, 18, 22], anti-fungal (112 Fig. 13), [19, 21] or liver protection (Fig. 4, 9) [8, 15]. Some of these compounds also exist as flavoring or taste agents in food (Fig. 3, 10), [7, 16], inhibitors of overproduction nitrogen sulfide (5, 6, 11), [10, 12, 18] or pesticides (Fig. 2, 13), [6, 20]. Hydroxylactones are usually isolated from plants, in many cases, those that are used in traditional folk medicine (Fig. 1, 4, 6, 7, 9, 11, 14, 15, 17), [1, 3, 8, 9, 12, 13, 15, 18, 22, 23, 25, 26], and sometimes from the other organisms, such as microorganisms or fungi (Fig. 2, 5), [6, 10]. Lactones that contain a chlorine atom in their structure, in addition to or instead of the hydroxy group usually have cytotoxic properties (16, 17), [15, 25, 27]. They are found in both land- -based plants, mainly belonging to the family Asteraceae (Fig. 17) [25–27] as well as in marine organisms (Fig. 16), [24], in which the presence of chlorine atoms can be a result of the presence of salt (chloride) in seawater. The following article presents an overview of the various sources from which hydroxylactones and chlorolactones were isolated and also biological properties of these compounds.
Źródło:
Wiadomości Chemiczne; 2014, 68, 1-2; 117-131
0043-5104
2300-0295
Pojawia się w:
Wiadomości Chemiczne
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Naturalne i syntetyczne analogi strukturalne jononów
Natural and synthetic structural analogs of ionones
Autorzy:
Grabarczyk, M.
Wińska, K.
Mączka, W.
Powiązania:
https://bibliotekanauki.pl/articles/172354.pdf
Data publikacji:
2015
Wydawca:
Polskie Towarzystwo Chemiczne
Tematy:
pochodne jononów
aktywność biologiczna
biotransformacja
ionone derivatives
biological activity
biotransformation
Opis:
Both plants and animals in the process of evolution gained the ability to produce compounds that affect their existence in the wild. These compounds may affect the organisms producing them, and may also be used by completely different individuals. Among huge number of molecules characterized by extremely essential features are, among others, ionones and their derivatives. Ionones are ketones composed of 13 carbon atoms. They are found in many essential oils being the products of degradation of carotenoids. Both they and their structural analogues can play various biological functions such as being deterrent to other individuals or, conversely, atractant. Compounds found in plants, containing like ionone carbon skeleton, and having in their structure additional hydroxyl groups or epoxide ring (4)–(23) often exhibit allelopathic activity [1–15] (Fig. 2–5). Marine animals may in turn use them as ichtyotoxic compounds (27) and (28) [19] (Fig. 7). A compound called luciferin Latia (29) is responsible for the bioluminescent properties of marine snail [20] (Fig. 8). Plants used for centuries in traditional folk medicine of different countries are a source of glycoside derived α- and β-ionone (37)–(55) [22–31] (Fig. 11–14). These compounds may also be used in modern medicine, inter alia, in the regulation of neurodegenerative diseases or for the treatment of osteoporosis. Because of the potential biological properties of structural analogs of ionones they are also obtained by chemical synthesis (56)–(69) [32–39] (Fig. 15–18) or biotransformation (70)–(89) [40–47] (Fig. 19–25), and then subjected to careful examination of their biological activities. By applying these methods we can also obtain a molecules whose acquisition from natural sources is unprofitable. We have received such derivatives which have no counterpart in nature.
Źródło:
Wiadomości Chemiczne; 2015, 69, 11-12; 997-1018
0043-5104
2300-0295
Pojawia się w:
Wiadomości Chemiczne
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Izomery a zapach czyli nos jako stereochemik
Isomers and odor or nose as stereochemist
Autorzy:
Wińska, K.
Potaniec, B.
Mączka, W.
Grabarczyk, M.
Anioł, M.
Wawrzeńczyk, Cz.
Powiązania:
https://bibliotekanauki.pl/articles/141804.pdf
Data publikacji:
2014
Wydawca:
Stowarzyszenie Inżynierów i Techników Przemysłu Chemicznego. Zakład Wydawniczy CHEMPRESS-SITPChem
Tematy:
zapach
izomery
struktura-zapach
odor
isomer
structure-odor
Opis:
Nasz zmysł powonienia jest w stanie rozpoznać wiele zapachów, które pozornie są bardzo do siebie podobne. Dzięki temu, że receptory węchowe są w pewien sposób selektywne możliwe jest ozróżnienie zapachów zarówno enancjomerycznych par lotnych substancji jak i innych stereoizomerów. W niniejszej pracy przedstawione zostały różnice i podobieństwa właściwości pachowych izomerów przestrzennych. Przedstawione związki charakteryzują się odmiennym zapachem oraz intensywnością ale są również takie, gdzie zmiana dotyczy tylko jednej z tych cech.
Our sense of smell is able to recognize a variety of scents, which apparently are very similar. Thus olfactory receptors that are in some way it is possible to distinguish selective enantiomeric pairs fragrances and other volatile substances stereoisomers. This paper presents the differences and similarities odor characteristics of spatial isomers. The compounds are characterized by a different odor and intensity but also those where the change affects only one feature.
Źródło:
Chemik; 2014, 68, 2; 83-90
0009-2886
Pojawia się w:
Chemik
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Determination of the tolerance of sunflower to lead-induced stress
Autorzy:
Winska-Krysiak, M.
Koropacka, K.
Gawronski, S.
Powiązania:
https://bibliotekanauki.pl/articles/15865.pdf
Data publikacji:
2015
Wydawca:
Uniwersytet Warmińsko-Mazurski w Olsztynie / Polskie Towarzystwo Magnezologiczne im. Prof. Juliana Aleksandrowicza
Tematy:
lead
phytoremediation
determination
plant tolerance
sunflower
Helianthus annuus
glutathione
metallothionein gene
lead stress
Opis:
Six-week old sunflower seedlings, cv. Ogrodowy, were treated with 0, 15, 45 and 60 mg Pb dm-3, and then the content of lead and selected physiological and biochemical parameters were measured. Photosynthesis efficiency, water relations (intensity of transpiration, relative water content (RWC)) and gene-encoding metallothionein were measured three times after 24, 48 and 72 hours of exposure to Pb. The content of glutathione and lead was analysed after 72 hours’ exposure to Pb. Most of the lead uptake was accumulated in the roots, then in the stems and leaves, but when re-calculated per plant dry weight, the uptake of the metal did not depend on the lead dose applied. The highest 60 mg Pb dm-3 treatment was accompanied by a significant decrease in dry weight content. Moreover, most of the lead taken up in these plants was transported to the stems and leaves (23.6% of total lead uptake). The lead doses used in this study did not affect the intensity of photosynthesis, but a decrease in transpiration and relative water content was observed. The glutathione level in the plants varied depending on the organ examined and the Pb concentration in the treatment. The expression of the metallothionein gene HaMT1 was observed in the stems only. These results indicate that the sunflower cultivar Ogrodowy is a promising plant for phytoremediation of lead-polluted soils.
Źródło:
Journal of Elementology; 2015, 20, 2
1644-2296
Pojawia się w:
Journal of Elementology
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies