Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Sierchuła, J." wg kryterium: Autor


Wyświetlanie 1-4 z 4
Tytuł:
Rozruch elektrowni jądrowej na przykładzie symulatora C-PWR
Nuclear power plant start-up on example of C-PWR simulator
Autorzy:
Sierchuła, J.
Powiązania:
https://bibliotekanauki.pl/articles/376858.pdf
Data publikacji:
2017
Wydawca:
Politechnika Poznańska. Wydawnictwo Politechniki Poznańskiej
Tematy:
energetyka jądrowa
reaktor wodny ciśnieniowy
symulator bloku jądrowego
rozruch reaktora
Opis:
Elektrownia jądrowa z reaktorem wodnym ciśnieniowym (PWR) składa się z dwóch części: jądrowej oraz konwencjonalnej. Część konwencjonalna jest typowa dla wszystkich elektrowni cieplnych, przy czym od węglowych, różni się głównie niższymi parametrami czynnika roboczego. Istotną różnicę stanowi natomiast obieg jądrowy, którego głównym elementem jest reaktor jądrowy. W reaktorze wytwarzane jest ciepło, transportowane następnie do wytwornicy pary. Szereg procesów związanych z wytwarzaniem, transportem i przetwarzaniem energii cieplnej umożliwia finalnie produkcję energii elektrycznej. W pracy został przedstawiony przebieg rozruchu elektrowni jądrowej z reaktorem wodnym ciśnieniowym (PWR), obejmujący początkową pracę pomp oraz stabilizatora ciśnienia w celu zwiększenia temperatury i ciśnienia czynnika roboczego w obiegu pierwotnym oraz stopniowe zwiększanie reaktywności w rdzeniu do uzyskania parametrów znamionowych reaktora. Wszystkie wyżej wymienione procesy zostały zasymulowane w programie C-PWR oraz poddane dogłębnej analizie.
The nuclear power plant with pressurized water reactor (PWR) consists two parts: the nuclear and conventional. The conventional part is typical for all thermal power stations, but is characterized by lower parameters of working medium. The main difference is the primary circuit with nuclear reactor. In the reactor heat is generated and then transported to the steam generator. A number of processes associated with the production, transport and processing of thermal energy allows finally the production of electricity. The paper presents start-up process of nuclear power plant with pressurized water reactor (PWR), which includes an initial operation of the pumps and pressurizer in order to increase the temperature and pressure of the working medium in the primary circuit and the gradual reactivity increase in reactor core. All of above mentioned processes were simulated in the C-PWR and thoroughly analysed.
Źródło:
Poznan University of Technology Academic Journals. Electrical Engineering; 2017, 90; 203-212
1897-0737
Pojawia się w:
Poznan University of Technology Academic Journals. Electrical Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Modelowanie pracy reaktora wodno-ciśnieniowego podczas pierwszej kampanii paliwowej
Modeling of a pressurized water reactor during first fuel campaign
Autorzy:
Sierchuła, J.
Powiązania:
https://bibliotekanauki.pl/articles/377043.pdf
Data publikacji:
2018
Wydawca:
Politechnika Poznańska. Wydawnictwo Politechniki Poznańskiej
Tematy:
energetyka jądrowa
reaktor wodny ciśnieniowy
AP1000
efektywny współczynnik mnożenie neutronów
wypalenie paliwa jądrowego
Opis:
W 2017 roku na świecie eksploatowanych było 449 reaktorów jądrowych, z czego ponad 60% stanowiły reaktory wodno-ciśnieniowe. Jednym z najnowocześniejszych reaktorów tego typu jest reaktor AP1000, opracowany przez firmę Westinghouse. Wymieniona konstrukcja brana jest również pod uwagę pod kątem budowy pierwszej w Polsce elektrowni jądrowej, ze względów zarówno ekonomicznych, technicznych, jak i zaimplementowanych systemów bezpieczeństwa, które zostały w niej bardzo rozbudowane. W poniższej pracy, poza przedstawieniem układu technologicznego reaktora AP1000, został zaprezentowany jego model, umożliwiający między innymi badanie wpływu ułożenia kaset paliwowych na współczynnik mnożenia neutronów/reaktywność, wyznaczanie gęstości strumienia neutronów w rdzeniu czy badanie poziomu wypalenia paliwa jądrowego. Uzyskane wyniki zostały poddane analizie i odniesione do danych literaturowych w celu weryfikacji stworzonego modelu.
Over 449 nuclear reactors have been operating in the world in 2017. More than 60% of them were the pressurized water reactors. One from the most modern reactors of this type is the AP1000 reactor, developed by Westinghouse. The mentioned construction is also taken into account in terms of the construction of the first nuclear power plant in Poland, for both economic and technical reasons as well as very well developed safety systems. In the following work, apart from the presentation of the AP1000 reactor technology system, the model of reactor core was presented. Above-mentioned model allows, among other things, to investigate the impact of fuel assemblies on the neutron multiplication factor/reactivity, determination of neutron flux density in the core or level of fuel burnout. The obtained results were analyzed and referenced to the literature data in order to verify created model.
Źródło:
Poznan University of Technology Academic Journals. Electrical Engineering; 2018, 94; 51-61
1897-0737
Pojawia się w:
Poznan University of Technology Academic Journals. Electrical Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Analiza energetyczna układu technologicznego elektrowni jądrowej
Analysis of nuclear power plant’s technological system
Autorzy:
Sierchuła, J.
Powiązania:
https://bibliotekanauki.pl/articles/377618.pdf
Data publikacji:
2016
Wydawca:
Politechnika Poznańska. Wydawnictwo Politechniki Poznańskiej
Tematy:
energetyka jądrowa
reaktor wodnociśnieniowy
blok energetyczny
bilans energetyczny
Opis:
W niniejszej pracy zaprezentowano analizę energetyczną układu technologicznego elektrowni jądrowej, obejmującą swoim zakresem przedstawienie struktury elektrowni jądrowej z reaktorem wodnociśnieniowym, charakterystykę obiegu Rankien’a stanowiącego podstawowy obieg cieplny wykorzystywany w elektrowniach jądrowych, przedstawiono główne straty generowane podczas normalnej eksploatacji oraz metody wyznaczania sprawności, a także opis oraz metody optymalizacji najważniejszych parametrów obiegu pierwotnego oraz obiegu chłodzenia bloku jądrowego. Zaprezentowany został również uproszczony układ technologiczny rzeczywistej elektrowni jądrowej z wodnociśnieniowym reaktorem WWER-440, na podstawie którego przedstawiono metodę obliczeniową wykorzystywaną do wyznaczania konkretnych wartości parametrów bloku.
In this paper author presents an analysis of nuclear power plant’s technological system. Analysis includes structure of the nuclear power plant, description of pressurised water reactor, characteristic of Rankien cycle, which is which is the main heat cycle using in nuclear power plants, presentation of major losses generated during normal power plant exploitation, methods of determining the efficiency and methods of optimization key parameters of primary and cooling circuit in nuclear power unit. Article also presents a simplified scheme of nuclear power plant with VVER-440 reactor and a mathematical model which allows to calculate the key parameters of this plant.
Źródło:
Poznan University of Technology Academic Journals. Electrical Engineering; 2016, 86; 45-53
1897-0737
Pojawia się w:
Poznan University of Technology Academic Journals. Electrical Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Passive Safety Systems in Modern Nuclear Power Stations
Pasywne systemy bezpieczeństwa w nowoczesnych elektrowniach jądrowych
Autorzy:
Sierchuła, J. A.
Sroka, K.
Powiązania:
https://bibliotekanauki.pl/articles/397680.pdf
Data publikacji:
2017
Wydawca:
ENERGA
Tematy:
passive safety systems
AP1000 reactor
residual heat
nuclear power station safety
nuclear power engineering
pasywne systemy bezpieczeństwa
reaktor AP-1000
ciepło powyłączeniowe
elektrownia jądrowa
bezpieczeństwo
energetyka jądrowa
Opis:
The authors present operating principles of passive safety systems used in nuclear power plants using the example of the AP1000 plant. In particular, they describe the passive residual heat removal system and the passive containment cooling system. Moreover, the paper presents an analysis of a scenario involving the failure to start of active elements (Diesel generators) in the case of a loss of off-site power. The study presents the role of passive safety systems mentioned above in residual heat removal, as well as their impact on the temperature of the working medium in the cooling circuit and the refuelling water storage tank (IRWST).
Autorzy przedstawiają zasadę działania pasywnych systemów bezpieczeństwa stosowanych w elektrowniach jądrowych na przykładzie elektrowni z reaktorem AP1000. W szczególności opisują pasywny układ odprowadzania ciepła powyłączeniowego oraz pasywny system chłodzenia obudowy bezpieczeństwa. Ponadto w artykule zaprezentowano analizę scenariusza zakładającego niezałączenie się elementów systemów aktywnych (generatory Diesla) w przypadku awarii polegającej na utracie zasilania zewnętrznego. W pracy przedstawiono rolę wyżej wymienionych systemów pasywnych w odbiorze ciepła powyłączeniowego oraz ich wpływ na temperaturę czynnika roboczego w obiegu chłodzenia oraz w basenie magazynowym wody przeładunkowej (IRWST).
Źródło:
Acta Energetica; 2017, 1; 112-117
2300-3022
Pojawia się w:
Acta Energetica
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies