Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Mrówka, Rafał" wg kryterium: Autor


Wyświetlanie 1-2 z 2
Tytuł:
ARMS-PCR for detection of BRAF V600E hotspot mutation in comparison with Real-Time PCR-based techniques
Autorzy:
Machnicki, Marcin
Glodkowska-Mrowka, Eliza
Lewandowski, Tomasz
Ploski, Rafał
Wlodarski, Pawel
Stoklosa, Tomasz
Powiązania:
https://bibliotekanauki.pl/articles/1039607.pdf
Data publikacji:
2013
Wydawca:
Polskie Towarzystwo Biochemiczne
Tematy:
molecular diagnostics
BRAF mutation screening
Opis:
BRAF mutation testing is one of the best examples how modern genetic testing may help to effectively use targeted therapies in cancer patients. Since many different genetic techniques are employed to assess BRAF mutation status with no available comparison of their sensitivity and usefulness for different types of samples, we decided to evaluate our own PCR-based assay employing the amplification refractory mutation system (ARMS-PCR) to detect the most common hotspot mutation c. T1799A (p. V600E) by comparing it with two qPCR based assays: a commercially available test with hybridizing probes (TIB MOLBIOL) and high resolution melting (HRM). Positive results were verified with Sanger sequencing. DNA from two cancer cell lines with known mutation status and from tissue samples from melanoma and gastric cancer was used. ARMS-PCR was the most sensitive method with the level of detection of the mutant allele at 2%. Similar sensitivity was observed for the qPCR-based commercial test employing hybridizing probes; however, this test cannot exclude negative results from poor or low quality samples. Another qPCR-based method, HRM, had lower sensitivity with the detection level of approximately 20%. An additional drawback of HRM methodology was the inability to distinguish between wild type and mutant homozygotes in a straightforward assay, probably due to the character of this particular mutation (T\>A). Sanger sequencing had the sensitivity of the detection of mutant allele similar to HRM, approx. 20%. In conclusion, simple ARMS-PCR may be considered the method of choice for rapid, cost-effective screening for BRAF p. V600E mutation.
Źródło:
Acta Biochimica Polonica; 2013, 60, 1; 57-64
0001-527X
Pojawia się w:
Acta Biochimica Polonica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A novel method for fast generation of 3D objects from multiple depth sensors
Autorzy:
Szmuc, Tomasz
Mrówka, Rafał
Brańka, Marek
Ficoń, Jakub
Pięta, Piotr
Powiązania:
https://bibliotekanauki.pl/articles/2201328.pdf
Data publikacji:
2023
Wydawca:
Społeczna Akademia Nauk w Łodzi. Polskie Towarzystwo Sieci Neuronowych
Tematy:
3D scan
LiDAR
point cloud
mesh
registration
Opis:
Scanning real 3D objects face many technical challenges. Stationary solutions allow for accurate scanning. However, they usually require special and expensive equipment. Competitive mobile solutions (handheld scanners, LiDARs on vehicles, etc.) do not allow for an accurate and fast mapping of the surface of the scanned object. The article proposes an end-to-end automated solution that enables the use of widely available mobile and stationary scanners. The related system generates a full 3D model of the object based on multiple depth sensors. For this purpose, the scanned object is marked with markers. Markers type and positions are automatically detected and mapped to a template mesh. The reference template is automatically selected for the scanned object, which is then transformed according to the data from the scanners with non-rigid transformation. The solution allows for the fast scanning of complex and varied size objects, constituting a set of training data for segmentation and classification systems of 3D scenes. The main advantage of the proposed solution is its efficiency, which enables real-time scanning and the ability to generate a mesh with a regular structure. It is critical for training data for machine learning algorithms. The source code is available at https://github.com/SATOffice/improved_scanner3D.
Źródło:
Journal of Artificial Intelligence and Soft Computing Research; 2023, 13, 2; 95--105
2083-2567
2449-6499
Pojawia się w:
Journal of Artificial Intelligence and Soft Computing Research
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies