Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Jeans, C." wg kryterium: Autor


Wyświetlanie 1-6 z 6
Tytuł:
Calcite cements and the stratigraphical significance of the marine [delta^13]C carbonate reference curve for the Upper Cretaceous Chalk of England
Autorzy:
Jeans, C.
Hu, X.
Mortimore, R.
Powiązania:
https://bibliotekanauki.pl/articles/139078.pdf
Data publikacji:
2012
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
cement kalcytowy
chemostratygrafia
izotopy
korelacja
kreda
krzywa referencyjna
ograniczenia
calcite cement
chemostratigraphy
correlation
Cretaceous
[delta^13]C reference curve
isotope events
limitations
Opis:
The hypothesis of Jarvis et al. (2006) that a [delta^13]C (calcite) reference curve based upon bulk samples from the Upper Cretaceous Chalk of England can be used as a primary criterion for trans-continental correlation is reviewed in the light of new stable isotope data from the Upper Albian and Cenomanian chalks of eastern England and from the Cenomanian to Campanian chalks of southern England. Evidence demonstrates that in the coloured chalks of eastern England the cements invariably have positive [delta^13]C values (up to 3.5[per mil]) except where they have been affected by hardground development when the cements have negative [delta^13]C values down to -6.5[per mil]. in contrast, the White Chalk of southern England may have cements with [delta^13]C values as negative as -8[per mil]. Modelling indicates that the coloured chalks may preserve a truer record of the primary palaeo-oceanographic [delta^13]C signal than the white and grey chalks of southern England. it is suggested that (1) many of the 72 isotope events described from the [delta^13]C (calcite) reference curve and proposed for correlation may reflect the effects of variations in the type and extent of calcite cementation; and (2) until much more is known about the patterns of calcite cementation in the Upper Cretaceous Chalk the use of minor isotope events for trans-continental stratigraphic correlation can only be applied with the utmost caution.
Źródło:
Acta Geologica Polonica; 2012, 62, 2; 173-196
0001-5709
Pojawia się w:
Acta Geologica Polonica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Geochemical and stable isotope patterns of calcite cementation in the Upper Cretaceous Chalk, UK: Direct evidence from calcite-filled vugs in brachiopods
Autorzy:
Hu, X.
Jeans, C.
Dickson, T.
Powiązania:
https://bibliotekanauki.pl/articles/139259.pdf
Data publikacji:
2012
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
cement kalcytowy
diageneza
historia
izotopy stabilne
kreda
pierwiastki śladowe
wpływ drobnoustrojów
anoxia
calcite cement
chalk
diagenesis
history
Microbial influence
oxia
stable isotopes
suboxia
trace elements
Opis:
The history of research into the cementation of the Upper Cretaceous Chalk of the UK is reviewed. Calcite-filled vugs within the shell cavities of terebratulid brachiopods from the Cenomanian Chalk of eastern england have been investigated by cathodoluminesence imaging, staining, electron microprobe and stable isotope analysis. This has provided the first detailed analysis of the geochemistry of the Chalk.s cement. two cement series, suboxic and anoxic, are recognized. Both start with a Mg-rich calcite with positive [delta^13]C values considered to have been precipitated under oxic conditions influenced by aerobic ammonification. The suboxic series is characterized by positive [delta^13]C values that became increasingly so as cementation progressed, reaching values of 3.5[per mil]. Manganese is the dominant trace element in the earlier cement, iron in the later cement. Mn-and Fe-reducing microbes influenced cement precipitation and the trace element and [delta^13]C patterns. The anoxic series is characterized by [delta^13]C values that became increasingly negative as cementation progressed, reaching values of .6.5[per mil]. Trace elements are dominated by iron and manganese. Sulphate-reducing microbes influenced cement precipitation and the trace element and [delta^13]C patterns. Both cement series are related closely to lithofacies and early lithification pre-dating the regional hardening of the Chalk. The suboxic series occurs in chalk which was continuously deposited and contained hematite pigment and limited organic matter. The anoxic series was associated with slow to nil deposition and hardground development inc halks that originally contained hematite pigment but no longer do so, and an enhanced supply of organic matter.
Źródło:
Acta Geologica Polonica; 2012, 62, 2; 143-172
0001-5709
Pojawia się w:
Acta Geologica Polonica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Redox conditions in the Late Cretaceous Chalk Sea: the possible use of cerium anomalies as palaeoredox indicators in the Cenomanian and Turonian Chalk of England
Autorzy:
Jeans, C. V.
Wray, D. S.
Williams, C. T.
Powiązania:
https://bibliotekanauki.pl/articles/139095.pdf
Data publikacji:
2015
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
chalk environments
rare earth element (REE) anomalies
methods
palaeoredox indicators
diagenesis
history
pierwiastki ziem rzadkich
REE
anomalie
metody
diageneza
historia
Opis:
The cerium anomalies preserved in the Chalk have been investigated as possible palaeoredox indicators of the Late Cretaceous Sea and its sediment. This has been based upon over a hundred new rare earth element analyses of selected samples and grain size fractions from the Chalk. Particular attention has been given to the methodology of differentiating between the cerium anomalies preserved in the bioclastic calcite and those in carbonate-fluorapatite preserved in the acetic acid insoluble residues of chalks. Variations in the cerium anomaly of different particle size fractions of uncemented chalks suggest that fractionation of rare earth elements between the Chalk’s seawater and the various organisms that contributed skeletal material to the bioclastic calcite of the Chalk may have occurred. Post-depositional processes of calcite cementation and late diagenetic sulphidisation have had no apparent effect on the cerium anomaly of the acetic acid insoluble residues. The cerium anomalies associated with the acetic acid insoluble residues from (1) an alternating sequence of chalks and marls from Ballard Cliff (Dorset, UK) typical of Milankovitch cyclicity show a marked diagenetic pattern, whereas those from (2) non-volcanic and volcanic marls display a pattern that is best explained by the variations in the availability of phosphorus and the timing of argillisation of volcanic glass during diagenesis. The general conclusion is drawn that the cerium anomalies preserved in the Chalk can provide an insight into the changing palaeoredox conditions in the Late Cretaceous Sea as well as in the pore fluids of its sediments.
Źródło:
Acta Geologica Polonica; 2015, 65, 3; 345-366
0001-5709
Pojawia się w:
Acta Geologica Polonica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Sulfur isotope patterns of iron sulfide and barite nodules in the Upper Cretaceous Chalk of England and their regional significance in the origin of coloured chalks
Autorzy:
Jeans, C. V.
Turchyn, A. V.
Hu, X.-F.
Powiązania:
https://bibliotekanauki.pl/articles/139390.pdf
Data publikacji:
2016
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
Cretaceous
diagenesis
iron sulfide nodules
δ34S values
bacterial control
coloured chalks
volcanogenic events
NW Europe
kreda
diageneza
siarczan żelaza
wartości δ34S
kontrola bakteryjna
Europa
Opis:
The relationship between the development of iron sulfide and barite nodules in the Cenomanian Chalk of England and the presence of a red hematitic pigment has been investigated using sulfur isotopes. In southern England where red and pink chalks are absent, iron sulfide nodules are widespread. Two typical large iron sulfide nodules exhibit δ34S ranging from -48.6‰ at their core to -32.6‰ at their outer margins. In eastern England, where red and pink chalks occur in three main bands, there is an antipathetic relationship between the coloured chalks and the occurrence of iron sulfide or barite nodules. Here iron sulfide, or its oxidised remnants, are restricted to two situations: (1) in association with hard grounds that developed originally in chalks that contained the hematite pigment or its postulated precursor FeOH3, or (2) in regional sulfidization zones that cut across the stratigraphy. In the Cenomanian Chalk exposed in the cliffs at Speeton, Yorkshire, pyrite and marcasite (both iron sulfide) nodules range in δ34S from -34.7‰ to +40.0‰. In the lower part of the section δ34S vary from -34.8‰ to +7.8‰, a single barite nodule has δ34S between +26.9‰ and +29.9‰. In the middle part of the section δ34S ranges from +23.8‰ to +40.0‰. In the sulfidization zones that cut across the Cenomanian Chalk of Lincolnshire the iron sulfide nodules are typically heavily weathered but these may contain patches of unoxidised pyrite. In these zones, δ34S ranges from -32.9‰ to +7.9‰. The cross-cutting zones of sulfidization in eastern England are linked to three basement faults – the Flamborough Head Fault Zone, the Caistor Fault and the postulated Wash Line of Jeans (1980) – that have affected the deposition of the Chalk. It is argued that these faults have been both the conduits by which allochthonous fluids – rich in hydrogen sulfide/sulfate, hydrocarbons and possibly charged with sulfate-reducing bacteria – have penetrated the Cenomanian Chalk as the result of movement during the Late Cretaceous or Cenozoic. These invasive fluids are associated with (1) the reduction of the red hematite pigment or its praecursor, (2) the subsequent development of both iron sulfides and barite, and (3) the loss of overpressure in the Cenomanian Chalk and its late diagenetic hardening by anoxic cementation. Evidence is reviewed for the origin of the red hematite pigment of the coloured chalks and for the iron involved in the development of iron sulfides, a hydrothermal or volcanogenic origin is favoured.
Źródło:
Acta Geologica Polonica; 2016, 66, 2; 227-256
0001-5709
Pojawia się w:
Acta Geologica Polonica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Regional hardening of Upper Cretaceous Chalk in eastern England, UK: trace element and stable isotope patterns in the Upper Cenomanian and Turonian Chalk and their significance
Autorzy:
Jeans, C. V.
Long, D.
Hu, X.-F.
Mortimore, R. N.
Powiązania:
https://bibliotekanauki.pl/articles/139436.pdf
Data publikacji:
2014
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
chalk hardening
trace elements
stable isotopes
cement modelling
reservoir diagenesis
history
kreda
hartowanie
pierwiastki śladowe
izotopy trwałe
cement
historia
Opis:
The regional hardening of the Late Cenomanian to Early Turonian Chalk of the Northern Province of eastern England has been investigated by examining the pattern of trace elements and stable carbon and oxygen isotopes in the bulk calcite of two extensive and stratigraphically adjacent units each 4 to 5 m thick of hard chalk in Lincolnshire and Yorkshire. These units are separated by a sequence, 0.3–1.3 m thick, of variegated marls and clayey marls. Modelling of the geochemistry of the hard chalk by comparison with the Standard Louth Chalk, combined with associated petrographic and geological evidence, indicates that (1) the hardening is due to the precipitation of a calcite cement, and (2) the regional and stratigraphical patterns of geochemical variation in the cement are largely independent of each other and have been maintained by the impermeable nature of the thin sequence of the clay-rich marls that separate them. Two phases of calcite cementation are recognised. The first phase was microbially influenced and did not lithify the chalk. It took place predominantly in oxic and suboxic conditions under considerable overpressure in which the Chalk pore fluids circulated within the units, driven by variations in compaction, temperature, pore fluid pressure and local tectonics. There is evidence in central and southern Lincolnshire of the loss of Sr and Mg-enriched pore fluids to the south during an early part of this phase. The second phase of calcite precipitation was associated with the loss of overpressure in probably Late Cretaceous and in Cenozoic times as the result of fault movement in the basement penetrating the overlying Chalk and damaging the seal between the two chalk units. This greatly enhanced grain pressures, resulting in grain welding and pressure dissolution, causing lithification with the development of stylolites, marl seams, and brittle fractures. Associated with this loss of overpressure was the penetration of the chalk units by allochthonous fluids, rich in sulphate and hydrocarbons, derived probably from the North Sea Basin. Microbial sulphate-reduction under anoxic conditions within these allochthonous fluids has been responsible for dissolving the fine-grained iron and manganese oxides within the chalk, locally enriching the Fe and Mn content of the calcite cement. The possibility is discussed that the pattern of cementation preserved in these regionally hard chalks of Late Cenomanian and Early Turonian age may be different from that preserved in the younger (late Turonian to Campanian) more basinal chalks of eastern England.
Źródło:
Acta Geologica Polonica; 2014, 64, 4; 419-455
0001-5709
Pojawia się w:
Acta Geologica Polonica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Redox conditions, glacio-eustasy, and the status of the Cenomanian-Turonian Anoxic Event: new evidence from the Upper Cretaceous Chalk of England
Autorzy:
Jeans, Christopher V.
Wray, David S.
Williams, C. Terry
Bland, David J.
Wood, Christopher J.
Powiązania:
https://bibliotekanauki.pl/articles/1835600.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
Cretaceous
Cenomanian–Turonian Anoxic Event
eustatic lithocycles
glacial associations
redox conditions
cerium anomalies
carbon isotopes
NW Europe
Japan
kreda
cenoman
turon
asocjacje
redoks
izotopy węgla
północno-zachodnia Europa
Japonia
Opis:
The nature of the Cenomanian–Turonian Oceanic Anoxic Event (CTOAE) and its δ13 C Excursion is considered in the light of (1) the stratigraphical framework in which the CTOAE developed in the European shelf seas, (2) conclusions that can be drawn from new detailed investigations of the Chalk succession at three locations in England, at Melton Ross and Flixton in the Northern Province where organic-rich ‘black bands’ are present, and at Dover in the Southern Province (part of the Anglo-Paris Basin) where they are absent, and (3) how these conclusion fit in with the present understanding of the CTOAE. The application of the cerium anomaly method (German and Elderfield 1990) at Dover, Melton Ross and Flixton has allowed the varying palaeoredox conditions in the Chalk Sea and its sediments to be related to the acid insoluble residues, organic carbon, δ18O (calcite), δ13C (calcite), δ13C (organic matter), Fe 2+ and Mn2+ (calcite), and P/TiO2 (acid insoluble residue). This has provided evidence that the initial stages of the δ13C Excursion in England were related to (1) a drop of sea level estimated at between 45 and 85 metres, (2) influxes of terrestrial silicate and organic detritus from adjacent continental sources and the reworking of exposed marine sediments, and (3) the presence of three cold water phases (named the Wood, Jefferies and Black) associated with the appearance of the cold-water pulse fauna during the Plenus Cold Event. Conditions in the water column and in the chalk sediment were different in the two areas. In the Northern Province, cerium-enriched waters and anoxic conditions were widespread; the δ13C pattern reflects the interplay between the development of anoxia in the water column and the preservation of terrestrial and marine organic matter in the black bands; here the CTOAE was short-lived (~0.25 Ma) lasting only the length of the Upper Cenomanian Metoicoceras geslinianum Zone. In the Southern Province, water conditions were oxic and the δ13C Excursion lasted to the top of the Lower Turonian Watinoceras devonense Zone, much longer (~1.05 Ma) than in the Northern Province. These differences are discussed with respect to (1) the Cenomanian–Turonian Anoxic Event (CTAE) hypothesis when the ocean-continent-atmosphere systems were linked, (2) limitations of chemostratigraphic global correlation, and (3) the Cenomanian-Turonian Anoxic Event Recovery (CTOAER), a new term to define the varying lengths of time it took different oceans and seas to recover once the linked ocean-continent-atmosphere system was over. The possibility is considered that glacio-eustasy (the glacial control hypothesis of Jeans et al. 1991) with the waxing and waning of polar ice sheets, in association with the degassing of large igneous provinces, may have set the scene for the development of the Cenomanian-Turonian Anoxic Event (CTAE).
Źródło:
Acta Geologica Polonica; 2021, 71, 2; 103-152
0001-5709
Pojawia się w:
Acta Geologica Polonica
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-6 z 6

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies