Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Jankowska, Kamila" wg kryterium: Autor


Wyświetlanie 1-2 z 2
Tytuł:
Effectiveness Analysis of Rolling Bearing Fault Detectors Based On Self-Organising Kohonen Neural Network – A Case Study of PMSM Drive
Autorzy:
Jankowska, Kamila
Ewert, Pawel
Powiązania:
https://bibliotekanauki.pl/articles/1955971.pdf
Data publikacji:
2021
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
PMSM
rolling bearing
electric drive diagnostics
self-organising map
shallow neural network
Opis:
Due to their many advantages, permanent magnet synchronous motors (PMSMs) are increasingly used in not only industrial drive systems but also electric and hybrid vehicle drives, aviation and other applications. Unfortunately, PMSMs are not free from damage that occurs during their operation. It is assumed that about 40% of the damage that occurs is related to rolling bearing damage. This article focuses on the use of Kohonen neural network (KNN) for rolling bearing damage detection in a PMSM drive system. The symptoms from the fast Fourier transform (FFT) and Envelope (ENV) Analysis of the mechanical vibration acceleration signal were analysed. The signal ENV was obtained by applying the Hilbert transform (HT). Two neural network functions are discussed: a detector and a classifier. The detector detected the damage and the classifier determined the type of damage to the rolling bearing (undamaged bearing, damaged rolling element, outer or inner race). The effectiveness of the analysed networks from the point of view of the applied signal processing method, map size, type of neighbourhood radius, distance function and the influence of input data normalisation are presented. The results are presented in the form of a confusion matrix, together with 2D and 3D maps of active neurons.
Źródło:
Power Electronics and Drives; 2021, 6, 41; 100-112
2451-0262
2543-4292
Pojawia się w:
Power Electronics and Drives
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Universal System for Detection and Compensation of Current Sensor Faults in Three-Phase Power Electronic Systems
Autorzy:
Dybkowski, Mateusz
Jankowska, Kamila Anna
Powiązania:
https://bibliotekanauki.pl/articles/2175934.pdf
Data publikacji:
2022
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
FTC
fault-tolerant control system
active rectifier
current sensor
PMSM
permanent magnet synchronous motor
IM
induction motor
diagnostics
Opis:
The article discusses the universal current sensor fault detection and compensation mechanism, which can be applied in three-phase power electronics (PE) symmetrical system. The mechanism is based on the assumption that a symmetrical system can be described using different components in the stationary reference frame. The solution given in article as a Cri-base detector was tested in electrical drives with induction motors (IMs) and permanent magnet synchronous motors (PMSMs). This study also proves that the same algorithm can work stable in active rectifier systems. Such an application of this detector has not been previously reported in the literature. The article describes the detection of various types of faults in different phases. The fault-tolerant voltage-oriented control (FTVOC) of an active rectifier is compared with previously described solutions for IMs and PMSMs. By analysing in various types of systems, the work proves the universality of the detector based on Cri markers.
Źródło:
Power Electronics and Drives; 2022, 7, 42; 267--278
2451-0262
2543-4292
Pojawia się w:
Power Electronics and Drives
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies