- Tytuł:
- On The Total Roman Domination in Trees
- Autorzy:
-
Amjadi, Jafar
Sheikholeslami, Seyed Mahmoud
Soroudi, Marzieh - Powiązania:
- https://bibliotekanauki.pl/articles/31343413.pdf
- Data publikacji:
- 2019-05-01
- Wydawca:
- Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
- Tematy:
-
total Roman dominating function
total Roman domination number
trees - Opis:
- A total Roman dominating function on a graph G is a function f : V (G) → {0, 1, 2} satisfying the following conditions: (i) every vertex u for which f(u) = 0 is adjacent to at least one vertex v for which f(v) = 2 and (ii) the subgraph of G induced by the set of all vertices of positive weight has no isolated vertex. The weight of a total Roman dominating function f is the value f(V (G)) = Σu∈V(G) f(u). The total Roman domination number γtR(G) is the minimum weight of a total Roman dominating function of G. Ahangar et al. in [H.A. Ahangar, M.A. Henning, V. Samodivkin and I.G. Yero, Total Roman domination in graphs, Appl. Anal. Discrete Math. 10 (2016) 501–517] recently showed that for any graph G without isolated vertices, 2γ(G) ≤ γtR(G) ≤ 3γ(G), where γ(G) is the domination number of G, and they raised the problem of characterizing the graphs G achieving these upper and lower bounds. In this paper, we provide a constructive characterization of these trees.
- Źródło:
-
Discussiones Mathematicae Graph Theory; 2019, 39, 2; 519-532
2083-5892 - Pojawia się w:
- Discussiones Mathematicae Graph Theory
- Dostawca treści:
- Biblioteka Nauki