Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "nonlinear multi agent systems" wg kryterium: Wszystkie pola


Wyświetlanie 1-4 z 4
Tytuł:
Neuro-adaptive cooperative control for high-order nonlinear multi-agent systems with uncertainties
Autorzy:
Peng, Cheng
Zhang, Anguo
Li, Junyu
Powiązania:
https://bibliotekanauki.pl/articles/2055174.pdf
Data publikacji:
2021
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
multiagent system
radial basis function
RBF neural network
sliding mode control
cooperative control
system wieloagentowy
radialna funkcja bazowa
sieć neuronowa RBF
sterowanie ślizgowe
Opis:
The consensus problem for a class of high-order nonlinear multi-agent systems (MASs) with external disturbance and system uncertainty is studied. We design an online-update radial basis function (RBF) neural network based distributed adaptive control protocol, where the sliding model control method is also applied to eliminate the influence of the external disturbance and system uncertainty. System consensus is verified by using the Lyapunov stability theorem, and sufficient conditions for cooperative uniform ultimately boundedness (CUUB) are also derived. Two simulation examples demonstrate the effectiveness of the proposed method for both homogeneous and heterogeneous MASs.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2021, 31, 4; 635--645
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Cluster consensus of general fractional-order nonlinear multi agent systems via adaptive sliding mode controller
Autorzy:
Yaghoubi, Zahra
Talebi, Heidar Ali
Powiązania:
https://bibliotekanauki.pl/articles/230002.pdf
Data publikacji:
2019
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
nonlinear multi agent systems
cluster consensus
fractional-order systems
adaptive sliding mode controller
Opis:
In this paper cluster consensus is investigated for general fractional-order multi agent systems with nonlinear dynamics via adaptive sliding mode controller. First, cluster consensus for fractional-order nonlinear multi agent systems with general form is investigated. Then, cluster consensus for the fractional-order nonlinear multi agent systems with first-order and general form dynamics is investigated by using adaptive sliding mode controller. Sufficient conditions for achieving cluster consensus for general fractional-order nonlinear multi agent systems are proved based on algebraic graph theory, Lyapunov stability theorem and Mittag-Leffler function. Finally, simulation examples are presented for first-order and general form multi agent systems, i.e. a single-link flexible joint manipulator which demonstrates the efficiency of the proposed adaptive controller.
Źródło:
Archives of Control Sciences; 2019, 29, 4; 643-665
1230-2384
Pojawia się w:
Archives of Control Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Event-triggered cooperative control for high-order nonlinear multi-agent systems with finite-time consensus
Autorzy:
Gong, Shiyin
Zheng, Meirong
Hu, Jing
Zhang, Anguo
Powiązania:
https://bibliotekanauki.pl/articles/24200691.pdf
Data publikacji:
2023
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
multiagent system
cooperative control
event triggered control
neuroadaptive control
prescribed performance
system wieloagentowy
sterowanie wyzwalane zdarzeniami
sterowanie neuroadaptacyjne
Opis:
An event-triggered adaptive control algorithm is proposed for cooperative tracking control of high-order nonlinear multiagent systems (MASs) with prescribed performance and full-state constraints. The algorithm combines dynamic surface technology and the backstepping recursive design method, with radial basis function neural networks (RBFNNs) used to approximate the unknown nonlinearity. The barrier Lyapunov function and finite-time stability theory are employed to prove that all agent states are semi-globally uniform and ultimately bounded, with the tracking error converging to a bounded neighborhood of zero in a finite time. Numerical simulations are provided to demonstrate the effectiveness of the proposed control scheme.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2023, 33, 3; 439--448
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Nonlinear convergence algorithm: structural properties with doubly stochastic quadratic operators for multi-agent systems
Autorzy:
Abdulghafor, R.
Turaev, S.
Zeki, A.
Abubaker, A.
Powiązania:
https://bibliotekanauki.pl/articles/91876.pdf
Data publikacji:
2018
Wydawca:
Społeczna Akademia Nauk w Łodzi. Polskie Towarzystwo Sieci Neuronowych
Tematy:
doubly stochastic quadratic operators
nonlinear convergence algorithm
consensus problem
multi-agent systems
kwadratowe operatory podwójnie stochastyczne
problem konsensusu
systemy wieloagentowe
Opis:
This paper proposes nonlinear operator of extreme doubly stochastic quadratic operator (EDSQO) for convergence algorithm aimed at solving consensus problem (CP) of discrete-time for multi-agent systems (MAS) on n-dimensional simplex. The first part undertakes systematic review of consensus problems. Convergence was generated via extreme doubly stochastic quadratic operators (EDSQOs) in the other part. However, this work was able to formulate convergence algorithms from doubly stochastic matrices, majorization theory, graph theory and stochastic analysis. We develop two algorithms: 1) the nonlinear algorithm of extreme doubly stochastic quadratic operator (NLAEDSQO) to generate all the convergent EDSQOs and 2) the nonlinear convergence algorithm (NLCA) of EDSQOs to investigate the optimal consensus for MAS. Experimental evaluation on convergent of EDSQOs yielded an optimal consensus for MAS. Comparative analysis with the convergence of EDSQOs and DeGroot model were carried out. The comparison was based on the complexity of operators, number of iterations to converge and the time required for convergences. This research proposed algorithm on convergence which is faster than the DeGroot linear model.
Źródło:
Journal of Artificial Intelligence and Soft Computing Research; 2018, 8, 1; 49-61
2083-2567
2449-6499
Pojawia się w:
Journal of Artificial Intelligence and Soft Computing Research
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies