Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "color-class digraph" wg kryterium: Wszystkie pola


Wyświetlanie 1-2 z 2
Tytuł:
Kernels by monochromatic paths and the color-class digraph
Autorzy:
Galeana-Sánchez, Hortensia
Powiązania:
https://bibliotekanauki.pl/articles/743879.pdf
Data publikacji:
2011
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
kernel
kernel by monochromatic paths
the color-class digraph
Opis:
An m-colored digraph is a digraph whose arcs are colored with m colors. A directed path is monochromatic when its arcs are colored alike.
A set S ⊆ V(D) is a kernel by monochromatic paths whenever the two following conditions hold:
1. For any x,y ∈ S, x ≠ y, there is no monochromatic directed path between them.
2. For each z ∈ (V(D)-S) there exists a zS-monochromatic directed path.
In this paper it is introduced the concept of color-class digraph to prove that if D is an m-colored strongly connected finite digraph such that:
(i) Every closed directed walk has an even number of color changes,
(ii) Every directed walk starting and ending with the same color has an even number of color changes, then D has a kernel by monochromatic paths.
This result generalizes a classical result by Sands, Sauer and Woodrow which asserts that any 2-colored digraph has a kernel by monochromatic paths, in case that the digraph D be a strongly connected digraph.
Źródło:
Discussiones Mathematicae Graph Theory; 2011, 31, 2; 273-281
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Kernels by Monochromatic Paths and Color-Perfect Digraphs
Autorzy:
Galeana-Śanchez, Hortensia
Sánchez-López, Rocío
Powiązania:
https://bibliotekanauki.pl/articles/31340961.pdf
Data publikacji:
2016-05-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
kernel
kernel perfect digraph
kernel by monochromatic paths
color-class digraph
quasi color-perfect digraph
color-perfect digraph
Opis:
For a digraph D, V (D) and A(D) will denote the sets of vertices and arcs of D respectively. In an arc-colored digraph, a subset K of V(D) is said to be kernel by monochromatic paths (mp-kernel) if (1) for any two different vertices x, y in N there is no monochromatic directed path between them (N is mp-independent) and (2) for each vertex u in V (D) \ N there exists v ∈ N such that there is a monochromatic directed path from u to v in D (N is mp-absorbent). If every arc in D has a different color, then a kernel by monochromatic paths is said to be a kernel. Two associated digraphs to an arc-colored digraph are the closure and the color-class digraph C(D). In this paper we will approach an mp-kernel via the closure of induced subdigraphs of D which have the property of having few colors in their arcs with respect to D. We will introduce the concept of color-perfect digraph and we are going to prove that if D is an arc-colored digraph such that D is a quasi color-perfect digraph and C(D) is not strong, then D has an mp-kernel. Previous interesting results are generalized, as for example Richardson′s Theorem.
Źródło:
Discussiones Mathematicae Graph Theory; 2016, 36, 2; 309-321
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies