Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "LOO" wg kryterium: Wszystkie pola


Wyświetlanie 1-2 z 2
Tytuł:
Estimation of covariance parameters for GNSS/leveling geoid data by Leave-One-Out validation
Autorzy:
Jarmołowski, W.
Powiązania:
https://bibliotekanauki.pl/articles/298144.pdf
Data publikacji:
2013
Wydawca:
Uniwersytet Warmińsko-Mazurski w Olsztynie
Tematy:
GNSS
leveling
geoid
least squares collocation
leave-one-out
LOO
covariance
noise
Opis:
The article describes the estimation of covariance parameters in Least Squares Collocation (LSC) by Leave-One-Out (LOO) validation, which is often considered as a kind of cross validation (CV). Two examples of GNSS/leveling (GNSS/lev) geoid data, characterized by different area extent and resolution are applied in the numerical test. A special attention is focused on the noise, which is not correlated in this case. The noise variance is set to be homogeneous for all points. Two parameters in three covariance models are analyzed via LOO, together with a priori noise standard deviation, which is a third parameter. The LOO validation finds individual parameters for different applied functions i.e. different correlation lengths and a priori noise standard deviations. Diverse standard deviations of a priori noise found for individual datasets illustrate a relevance of applying LOO in LSC. Two examples of data representing different spatial resolutions require individual noise covariance matrices to obtain optimal LSC results in terms of RMS in LOO validation. The computation of appropriate a priori noise variance is however difficult via typical covariance function fitting, especially in the case of sparse GNSS/leveling geoid data. Therefore LOO validation may be helpful in describing how the a priori noise parameter may affect LSC result and a posteriori error.
Źródło:
Technical Sciences / University of Warmia and Mazury in Olsztyn; 2013, 16(4); 291-307
1505-4675
2083-4527
Pojawia się w:
Technical Sciences / University of Warmia and Mazury in Olsztyn
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Bayesian model for multimodal sensory information fusion in humanoid
Autorzy:
Wong, W. K.
Loo, L. C.
Neoh, T. M.
Liew, Y. W.
Lee, E. K.
Powiązania:
https://bibliotekanauki.pl/articles/384986.pdf
Data publikacji:
2011
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Automatyki i Pomiarów
Tematy:
multimodal
Bayesian fusion
fixation
saccade
humanoid robot
Opis:
In this paper, the Bayesian model for bimodal sensory information fusion is presented. It is a simple and biological plausible model used to model the sensory fusion in human’s brain. It is adopted into humanoid robot to fuse the spatial information gained from analyzing auditory and visual input, aiming to increase the accuracy of object localization. Bayesian fusion model requires prior knowledge on weights for sensory systems. These weights can be determined based on standard deviation (SD) of unimodal localization error obtained in experiments. The performance of auditory and visual localization was tested under two conditions: fixation and saccade. The experiment result shows that Bayesian model did improve the accuracy of object localization. However, the fused position of the object is not accurate when both of the sensory systems were bias towards the same direction.
Źródło:
Journal of Automation Mobile Robotics and Intelligent Systems; 2011, 5, 1; 16-22
1897-8649
2080-2145
Pojawia się w:
Journal of Automation Mobile Robotics and Intelligent Systems
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies