Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Kvačkaj, M." wg kryterium: Wszystkie pola


Tytuł:
Mechanical and Structural Properties of High Purity Al Processed by ECAP
Autorzy:
Kvačkaj, T.
Kočiško, R.
Pokorný, I.
Bidulská, J.
Kvačkaj, M.
Kováčová, A.
Bidulský, R.
Lityńska-Dobrzyńska, L.
Dutkiewicz, J.
Powiązania:
https://bibliotekanauki.pl/articles/1418957.pdf
Data publikacji:
2012-09
Wydawca:
Polska Akademia Nauk. Instytut Fizyki PAN
Tematy:
81.05.Bx
81.07.-b
81.20.Hy
81.40.-z
Opis:
The mechanical properties and substructure formation of high purity aluminium (99.999%) processed by severe plastic deformation method (equal channel angular pressing) were studied. The equal channel angular pressing process was carried out at room temperature by route C (sample rotation around the axis about 180° after each pass) in a die with two channels intersecting at an angle of Φp = 90. The softening mechanism through dynamic recovery was recognized up to 6th equal channel angular pressing pass, however, after that the mechanical strengthening was revealed. The samples after equal channel angular pressing processing were annealed in different temperature and time conditions. The influence of annealing temperature and time on microhardness as well as diameter of grain size were investigated in samples processed by the 4th equal channel angular pressing pass.
Źródło:
Acta Physica Polonica A; 2012, 122, 3; 557-560
0587-4246
1898-794X
Pojawia się w:
Acta Physica Polonica A
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Structural Stability of Amorphous Alloy of Modified Finemet Type
Autorzy:
Huráková, M.
Csach, K.
Juríková, A.
Miškuf, J.
Rajňák, M.
Ďurišin, M.
Kvačkaj, T.
Powiązania:
https://bibliotekanauki.pl/articles/1387067.pdf
Data publikacji:
2015-02
Wydawca:
Polska Akademia Nauk. Instytut Fizyki PAN
Tematy:
61.43.Dq
62.20.Hg
62.20.de
Opis:
The Finemet type amorphous alloys are well known as high frequency soft magnetic materials. They have good soft magnetic properties which are characterized by low coercive force and high permeability because of the lack of crystalline anisotropy. The structural stability of the amorphous ribbon of Finemet type modified by Mn, Al and Cr prepared by melt-spinning process was studied using differential scanning calorimetry and dynamical mechanical analysis. With increase of the crystalline portion in the sample, the Curie transition is shifted to the higher temperatures. The magnetic relaxation processes at frequencies above 10⁴ Hz were detected by mass magnetic susceptibility measurement.
Źródło:
Acta Physica Polonica A; 2015, 127, 2; 564-566
0587-4246
1898-794X
Pojawia się w:
Acta Physica Polonica A
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Research of fatigue and mechanical properties AlMg1SiCu aluminium alloys
Autorzy:
Mihaliková, M
Lišková, A
Vojtko, M.
Kvačkaj, T.
Powiązania:
https://bibliotekanauki.pl/articles/957961.pdf
Data publikacji:
2015
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
aluminum alloys
mechanical properties
fractography
hardness
equal channel angular pressing (ECAP)
fatigue testing
Opis:
The paper is concerned with an analysis of utility and fatigue properties of industrially produced aluminium alloy, specifically EN AW 6061 (AlMg1SiCu), reinforced with the particles of SiC. The following properties were subject to evaluation: microstructure and sub-structure, mechanical characteristics. All of these mechanical properties in pre- and post- equal channel angular pressed (ECAP) state have been studied. The hardness was evaluated by Vickers hardness test at the load of HV10. The significant part the thesis was devoted to the fatigue properties at cyclic load in torsion. The presented results demonstrate well that the combination of fractography and microscopy can give a significant contribution to the knowledge of initiation and propagation crack in the aluminium alloy.
Źródło:
Advances in Science and Technology. Research Journal; 2015, 9, 28; 56-60
2299-8624
Pojawia się w:
Advances in Science and Technology. Research Journal
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Investigation of Fracture Surfaces of Soft Magnetic Materials
Autorzy:
Bidulská, J.
Kvačkaj, T.
Bidulský, R.
Actis Grande, M.
Ferraris, L.
Powiązania:
https://bibliotekanauki.pl/articles/1533971.pdf
Data publikacji:
2010-11
Wydawca:
Polska Akademia Nauk. Instytut Fizyki PAN
Tematy:
75.50.-y
81.20.Ev
81.40.Np
Opis:
The present paper focused on the analysis of the fracture surfaces of a new development insulated iron powder compound with the addition of the aluminium alloy in order to improve the mechanical properties. Results show that in the pressed state, mainly pores act as crack initiators and due to their presence the distribution of stress is inhomogeneous across the cross-section and leads to the reduction of the effective load bearing area. Investigation of fracture surfaces concluded that improvements in bonding during the pressing process and heat treatment can be helpful in the development of soft magnetic materials to give a suitable combination between pressing pressure, annealing temperature and time as well as magnetic properties.
Źródło:
Acta Physica Polonica A; 2010, 118, 5; 800-801
0587-4246
1898-794X
Pojawia się w:
Acta Physica Polonica A
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The Porosity Evaluation during ECAP in Aluminium PM Alloy
Autorzy:
Bidulská, J.
Kvačkaj, T.
Bidulský, R.
Actis Grande, M.
Powiązania:
https://bibliotekanauki.pl/articles/1418956.pdf
Data publikacji:
2012-09
Wydawca:
Polska Akademia Nauk. Instytut Fizyki PAN
Tematy:
81.05.Bx
81.07.Bc
81.20.Ev
81.40.-z
Opis:
The main aim of this paper is to show porosity evolution during application of various processing conditions including pressing, sintering and equal channel angular pressure. An aluminium based powder (Al-Mg-Si-Cu-Fe) was used as investigated material. After applying different pressing pressures (400 and 600 MPa), specimens were dewaxed in a ventilated furnace at 400C for 60 min. Sintering was carried out in a vacuum furnace at 610C for 30 min. The specimens were processed by single equal channel angular pressure pass. A significant disadvantage of powder metallurgy processing methods is the presence of porosity. Pores act as crack initiators and, due to their presence, the distribution of stress is inhomogeneous across the cross-section and leads to reduction of the effective load bearing area. The equal channel angular pressure process, causing stress distribution in deformed specimens, made the powder particles to squeeze together to such an extent that the initially interconnected pores transform to small isolated pores. The proposed safety diagram includes the combined effect of stress and strain behaviour during equal channel angular pressure. The "safety line" eliminates and quantifies the effect of large pores as a potential fracture initiation sites with respect to the mechanical viewpoint.
Źródło:
Acta Physica Polonica A; 2012, 122, 3; 553-556
0587-4246
1898-794X
Pojawia się w:
Acta Physica Polonica A
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Influence of ECAP-Back Pressure on the Porosity Distribution
Autorzy:
Bidulská, J.
Kvačkaj, T.
Kočiško, R.
Bidulský, R.
Actis Grande, M.
Donič, T.
Martikán, M.
Powiązania:
https://bibliotekanauki.pl/articles/1538174.pdf
Data publikacji:
2010-05
Wydawca:
Polska Akademia Nauk. Instytut Fizyki PAN
Tematy:
81.05.Bx
81.20.Ev
81.40.-z
81.70.Fy
Opis:
The main aim of this paper is to show how back pressure equal channel angular pressing (ECAP-BP) influences the porosity distribution in powder metallurgy (PM) aluminium alloys. When back pressure is applied, the accumulation of damage in deformed samples decreases due to the fact that the shear strain takes place under predominantly compressive stresses. Consequently, ECAP-BP influences the porosity distribution in terms of the severe shear deformation involved. According to the obtained results, interesting applications for this new progressive method in physical and metallurgical research fields are shown.
Źródło:
Acta Physica Polonica A; 2010, 117, 5; 864-868
0587-4246
1898-794X
Pojawia się w:
Acta Physica Polonica A
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Analysis of the Fracture Surfaces of New Development Insulated Iron Powder Compounds
Autorzy:
Bidulský, R.
Bidulská, J.
Kvačkaj, T.
Actis Grande, M.
Powiązania:
https://bibliotekanauki.pl/articles/1201089.pdf
Data publikacji:
2014-07
Wydawca:
Polska Akademia Nauk. Instytut Fizyki PAN
Tematy:
75.50.-y
81.20.Ev
81.40.Np
Opis:
Goal of the present paper is the analysis of the fracture surfaces of an Insulated Iron Powder Compound (IIPC) with different additions of aluminium alloy (0.25, 0.5 and 0.75 wt.%), in order to improve the mechanical properties, evaluated as the transverse rupture strength (TRS) with sufficient magnetic properties (mainly represented by the iron loss and coercivity force). Investigation of microstructure and porosity development concluded that improvements in bending strength and impact values require the reduction of surface oxides during the heat treatment, in order to get a proper load bearing area between the adjacent particles.
Źródło:
Acta Physica Polonica A; 2014, 126, 1; 154-155
0587-4246
1898-794X
Pojawia się w:
Acta Physica Polonica A
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Formability Evaluation of Aluminium Alloys by FLD Diagrams
Autorzy:
Petroušek, P.
Kočiško, R.
Kvačkaj, T.
Bidulský, R.
Bidulská, J.
Fedoriková, A.
Sabol, P.
Powiązania:
https://bibliotekanauki.pl/articles/1032922.pdf
Data publikacji:
2017-05
Wydawca:
Polska Akademia Nauk. Instytut Fizyki PAN
Tematy:
81.20.Hy
62.10.+s
62.20.M-
81.05.-t
82.80.-d
Opis:
The goal of the present work is evaluated mechanical properties and forming limit diagrams of ambient rolled aluminium alloy based on AlMgSi. Forming limit diagrams are convenient and often used as a tool for the classification of the formability and the evaluation of the forming process of sheet materials. Forming limits of sheet metal are represented in the forming limit diagrams occurring by various deformation states. The most widely used type is the Keeler-Goodwin diagram. Input data got from static tensile test are important for formability evaluating of the thin sheet by mathematical simulations, such as tensile strength, yield strength, elongation, and the strain hardening exponent. The result is a consideration of the suitability of the material for stamping technology.
Źródło:
Acta Physica Polonica A; 2017, 131, 5; 1344-1346
0587-4246
1898-794X
Pojawia się w:
Acta Physica Polonica A
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Material Recovery of OFHC Cu and FeSi Steel after Processing by Plastic Deformations
Autorzy:
Kvackaj, T.
Kocisko, R.
Bidulska, J.
Luptak, M.
Kovacova, A.
Powiązania:
https://bibliotekanauki.pl/articles/1032938.pdf
Data publikacji:
2017-05
Wydawca:
Polska Akademia Nauk. Instytut Fizyki PAN
Tematy:
61.82.Bg
07.20.Mc
81.20.Wk
62.20.F-
81.40.Ef
Opis:
The influence of thermoplastic processes through severe plastic deformations carried out at ambient temperature and through rolling carried out at cryogenic temperature on the recovery for two types of materials was investigated. As experimental materials, there were used oxygen free high conductivity copper and FeSi steel presenting materials with middle and high stacking fault energy, respectively. Both materials have been previously investigated, however mainly considering their material properties. In this study, oxygen free high conductivity Cu was processed by 13 passes through equal channel angular rolling which belongs to the severe plastic deformations group of methods. The rolling of FeSi steel at ambient and cryogenic temperatures was performed using a laboratory duo rolling mill, samples were rolled only by one pass. The aim of this study was to insert the strain to the materials with different stacking fault energy (middle and high) under ambient and cryogenic thermal conditions, respectively, and subsequently to observe the influence of stored energy on structural recovery of materials through differential scanning calorimetry method. This study implies that the recovery process characterized by the mobility of structural defects begins earlier for FeSi steel compared to oxygen free high conductivity Cu.
Źródło:
Acta Physica Polonica A; 2017, 131, 5; 1315-1318
0587-4246
1898-794X
Pojawia się w:
Acta Physica Polonica A
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Characterization of Microstructural and Mechanical Properties after Cold Rolling of an Electro-Sinter-Forged Cu-Sn Alloy
Autorzy:
Gobber, F. S.
Bidulská, J.
Fais, A.
Franchini, F.
Bidulský, R.
Kvačkaj, T.
Actis Grande, M.
Powiązania:
https://bibliotekanauki.pl/articles/352541.pdf
Data publikacji:
2020
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
Electro-Sinter-Forging
powder metallurgy
CuSn15
rolling
Opis:
Traditional press and sinter processes have gained in the last decades more and more importance in the manufacturing of high volume and precise mechanical components especially in the field of iron based powders. In recent years, the reductions of processing times and temperatures were spotted as critical targets to increase productivity and reduce energy consumption. Electric current assisted sintering (ECAS) technologies have always been seen as an alternative to traditional furnace based sintering techniques and have been the target of different researches with the specific purpose of reducing both operational times and costs. The aim of the present study is to investigate the effect of an innovative process called Electro Sinter Forging (ESF) applied to CuSn15 powders. Thanks to a very short processing time (less than 1 second to densify loose powders), this process is able to retain a very small grain size, thus enhancing mechanical properties of the processed materials. Furthermore, to the authors knowledge, cold – rolled electro – sinter – forged alloys has never been investigated before. First of all, bars were electro – sinter – forged and subsequently characterized in the as sinter – forged condition. The observation of microstructure evidenced an extremely fine microstructure and a reduced degree of porosity. Afterwards, bars were cold rolled after different reduction ratios; macrostructural integrity of the rolled bars was assessed before evaluating the effects of cold rolling on the sinter – forged microstructure.
Źródło:
Archives of Metallurgy and Materials; 2020, 65, 2; 787-792
1733-3490
Pojawia się w:
Archives of Metallurgy and Materials
Dostawca treści:
Biblioteka Nauki
Artykuł

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies