Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Implicit fractional differential equations" wg kryterium: Wszystkie pola


Wyświetlanie 1-4 z 4
Tytuł:
Stability analysis of implicit fractional differential equations with anti-periodic integral boundary value problem
Autorzy:
Zada, Akbar
Waheed, Hira
Powiązania:
https://bibliotekanauki.pl/articles/1791429.pdf
Data publikacji:
2020-01-01
Wydawca:
Uniwersytet Pedagogiczny im. Komisji Edukacji Narodowej w Krakowie
Tematy:
Implicit fractional differential equations
Fixed point theorem
Hyers-Ulam Stability
Opis:
In this manuscript, we study the existence, uniqueness and various kinds of Ulam stability including Ulam-Hyers stability, generalized Ulam-Hyers stability, Ulam-Hyers-Rassias stability, and generalized Ulam-Hyers-Rassias stability of the solution to an implicit nonlinear fractional differential equations corresponding to an implicit integral boundary condition. We develop conditions for the existence and uniqueness by using the classical fixed point theorems such as Banach contraction principle and Schaefer's fixed point theorem. For stability, we utilize classical functional analysis. The main results are well illustrated with an example.
Źródło:
Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica; 2020, 19; 5-25
2300-133X
Pojawia się w:
Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Existence and Ulam-Hyers stability of the implicit fractional boundary value problem with ψ-Caputo fractional derivative
Autorzy:
Wahash, Hanan A.
Abdo, Mohammed S
Panchal, Satish K.
Powiązania:
https://bibliotekanauki.pl/articles/122800.pdf
Data publikacji:
2020
Wydawca:
Politechnika Częstochowska. Wydawnictwo Politechniki Częstochowskiej
Tematy:
fractional differential equations
ψ-fractional integral and derivative
existence and Ulam-Hyers stability
fixed point theorem
równania różniczkowe ułamkowe
równania różniczkowe cząstkowe
pochodna ułamkowa
twierdzenie o punkcie stałym
pochodna ułamkowa Caputo
Opis:
In this paper, we investigate the existence, uniqueness and Ulam-Hyers stability of solutions for nonlinear implicit fractional differential equations with boundary conditions involving a ψ-Caputo fractional derivative. The obtained results for the proposed problem are proved under a new approach and minimal assumptions on the function ƒ . The analysis is based upon the reduction of the problem considered to the equivalent integral equation, while some fixed point theorems of Banach and Schauder and generalized Gronwall inequality are employed to obtain our results for the problem at hand. Finally, the investigation is illustrated by providing a suitable example.
Źródło:
Journal of Applied Mathematics and Computational Mechanics; 2020, 19, 1; 89-101
2299-9965
Pojawia się w:
Journal of Applied Mathematics and Computational Mechanics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Existence and Ulam-Hyers stability of the implicit fractional boundary value problem with ψ-Caputo fractional derivative
Autorzy:
Wahash, Hanan A.
Abdo, Mohammed S
Panchal, Satish K.
Powiązania:
https://bibliotekanauki.pl/articles/1839794.pdf
Data publikacji:
2020
Wydawca:
Politechnika Częstochowska. Wydawnictwo Politechniki Częstochowskiej
Tematy:
fractional differential equations
ψ-fractional integral and derivative
existence and Ulam-Hyers stability
fixed point theorem
równania różniczkowe ułamkowe
równania różniczkowe cząstkowe
pochodna ułamkowa
twierdzenie o punkcie stałym
pochodna ułamkowa Caputo
Opis:
In this paper, we investigate the existence, uniqueness and Ulam-Hyers stability of solutions for nonlinear implicit fractional differential equations with boundary conditions involving a ψ-Caputo fractional derivative. The obtained results for the proposed problem are proved under a new approach and minimal assumptions on the function ƒ. The analysis is based upon the reduction of the problem considered to the equivalent integral equation, while some fixed point theorems of Banach and Schauder and generalized Gronwall inequality are employed to obtain our results for the problem at hand. Finally, the investigation is illustrated by providing a suitable example.
Źródło:
Journal of Applied Mathematics and Computational Mechanics; 2020, 19, 1; 89-101
2299-9965
Pojawia się w:
Journal of Applied Mathematics and Computational Mechanics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The implicit numerical method for the one-dimensional anomalous subdiffusion equation with a nonlinear source term
Autorzy:
Błasik, Marek
Powiązania:
https://bibliotekanauki.pl/articles/2086846.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
fractional derivative
fractional integral
integro-differential equations
numerical method
finite difference method
pochodna ułamkowa
całkowanie ułamkowe
równanie całkowo-różniczkowe
metoda numeryczna
metoda elementów skończonych
Opis:
In the paper, the numerical method of solving the one-dimensional subdiffusion equation with the source term is presented. In the approach used, the key role is played by transforming of the partial differential equation into an equivalent integro-differential equation. As a result of the discretization of the integro-differential equation obtained an implicit numerical scheme which is the generalized Crank-Nicolson method. The implicit numerical schemes based on the finite difference method, such as the Carnk-Nicolson method or the Laasonen method, as a rule are unconditionally stable, which is their undoubted advantage. The discretization of the integro-differential equation is performed in two stages. First, the left-sided Riemann-Liouville integrals are approximated in such a way that the integrands are linear functions between successive grid nodes with respect to the time variable. This allows us to find the discrete values of the integral kernel of the left-sided Riemann-Liouville integral and assign them to the appropriate nodes. In the second step, second order derivative with respect to the spatial variable is approximated by the difference quotient. The obtained numerical scheme is verified on three examples for which closed analytical solutions are known.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2021, 69, 6; e138240, 1--9
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies