Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Dash, R. N." wg kryterium: Wszystkie pola


Wyświetlanie 1-3 z 3
Tytuł:
Stator inter-turn fault detection of an induction motor using neuro-fuzzy techniques
Autorzy:
Dash, R. N.
Subudhi, B.
Powiązania:
https://bibliotekanauki.pl/articles/229870.pdf
Data publikacji:
2010
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
inter-turn short circuit fault
phase shifts
adaptive neural fuzzy inference systems (ANFISs)
neural networks
induction motor
Opis:
Motivated by the superior performances of neural networks and neuro-fuzzy approaches to fault detection of a single phase induction motor, this paper studies the applicability these two approaches for detection of stator inter-turn faults in a three phase induction motor. Firstly, the paper develops an adaptive neural fuzzy inference system (ANFIS) detection strategy and then compares its performance with that of using a multi layer perceptron neural network (MLP NN) applied to stator inter-turn fault detection of a three phase induction motor. The fault location process is based on the monitoring the three phase shifts between the line current and the phase voltage of the induction machine.
Źródło:
Archives of Control Sciences; 2010, 20, 3; 363-376
1230-2384
Pojawia się w:
Archives of Control Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Predicting Tachypleus gigas Spawning Distribution with Climate Change in Northeast Coast of India
Autorzy:
Pati, Siddhartha
Shahimi, Salwa
Nandi, Debabrata
Sarkar, Tanmay
Acharya, Satya N.
Sheikh, Hassan I.
Acharya, Dipti Kanta
Choudhury, Tanupriya
Akbar John, B.
Nelson, Bryan R.
Dash, Bisnu Prasad
Edinur, Hisham Atan
Powiązania:
https://bibliotekanauki.pl/articles/1839192.pdf
Data publikacji:
2021
Wydawca:
Polskie Towarzystwo Inżynierii Ekologicznej
Tematy:
ecology
sustainability
season
arthropods
environment
temperature
Opis:
Species distribution models are used to predict ideal grounds, species range, and spatial shifts in an ecology over a span of time. With an aim to use Maximum entropy model (MaxEnt), presence records and pseudo-absence points are used to predict the Tachypleus gigas spawning activity for 2030 and 2050 in northeast India. The bearings of sixty T. gigas spawning grounds identified in 2018 were inserted into ArcGIS v.10.1. Meanwhile, 19 environment variables were inserted into MaxEnt v. 3.3.3, before the model performance was tested using receiver operational characteristics and area under curve (AUC). With an AUC of 0.978,85% was achieved for isothermality (bio3) and 74% for temperature (x̄= average) of the wettest quarter (bio8), all of which were inserted into ArcGIS to produce spatial maps. Although we learnt that T. gigas are still spawning in Odisha in 2030 and 2050, their distribution range is predicted to shrink due to the coastal morphology change. The climate conditions in Odisha revolve with the monsoon, summer and winter seasons from which, temperature variations do not only influence the annual absence/presence of spawning adults but also, the survival of juveniles in natal beaches. The use of MaxEnt offers novelty to predict population sustainability of arthropods characterized by oviparous spawning (horseshoe crabs, turtles, terrapins and crocodiles) through which, the government of India can take advantage of the present data to initiate the coastal rehabilitation measures to preserve their spawning grounds.
Źródło:
Journal of Ecological Engineering; 2021, 22, 3; 211-219
2299-8993
Pojawia się w:
Journal of Ecological Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies