Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "$L_1$-convergence" wg kryterium: Wszystkie pola


Wyświetlanie 1-6 z 6
Tytuł:
On the $L_1$-convergence of Fourier series
Autorzy:
Fridli, S.
Powiązania:
https://bibliotekanauki.pl/articles/1219140.pdf
Data publikacji:
1997
Wydawca:
Polska Akademia Nauk. Instytut Matematyczny PAN
Tematy:
Fourier series
$L_1$-convergence
a.e. convergence
Opis:
Since the trigonometric Fourier series of an integrable function does not necessarily converge to the function in the mean, several additional conditions have been devised to guarantee the convergence. For instance, sufficient conditions can be constructed by using the Fourier coefficients or the integral modulus of the corresponding function. In this paper we give a Hardy-Karamata type Tauberian condition on the Fourier coefficients and prove that it implies the convergence of the Fourier series in integral norm, almost everywhere, and if the function itself is in the real Hardy space, then also in the Hardy norm. We also compare it to the previously known conditions.
Źródło:
Studia Mathematica; 1997, 125, 2; 161-174
0039-3223
Pojawia się w:
Studia Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
From weak to strong types of $L_{E}^{1}$-convergence by the Bocce criterion
Autorzy:
J. Balder, Erik
Girardi, Maria
Jalby, Vincent
Powiązania:
https://bibliotekanauki.pl/articles/1290125.pdf
Data publikacji:
1994
Wydawca:
Polska Akademia Nauk. Instytut Matematyczny PAN
Opis:
Necessary and sufficient oscillation conditions are given for a weakly convergent sequence (resp. relatively weakly compact set) in the Bochner-Lebesgue space $ℒ_{E}^{1}$ to be norm convergent (resp. relatively norm compact), thus extending the known results for $ℒ_{ℝ}^{1}$. Similarly, necessary and sufficient oscillation conditions are given to pass from weak to limited (and also to Pettis-norm) convergence in $ℒ_{E}^{1}$. It is shown that tightness is a necessary and sufficient condition to pass from limited to strong convergence. Other implications between several modes of convergence in $ℒ_{E}^{1}$ are also studied.
Źródło:
Studia Mathematica; 1994, 111, 3; 241-262
0039-3223
Pojawia się w:
Studia Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Weak convergence in L1 of the sequences of monotonic functions
Autorzy:
Puchała, P.
Powiązania:
https://bibliotekanauki.pl/articles/122379.pdf
Data publikacji:
2014
Wydawca:
Politechnika Częstochowska. Wydawnictwo Politechniki Częstochowskiej
Tematy:
mathematics
weak convergence
quasi-Young measures
matematyka
zbieżność słaba
Opis:
We use (quasi-) Young measures associated with strictly monotonic functions with a differentiable inverse to prove an L1 ([0,1],ℝ) weak convergence of the monotonic sequence of such functions. The result is well known, but the method seems to be new.
Źródło:
Journal of Applied Mathematics and Computational Mechanics; 2014, 13, 3; 195-199
2299-9965
Pojawia się w:
Journal of Applied Mathematics and Computational Mechanics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A new convexity property that implies a fixed point property for $L_{1}$
Autorzy:
Lennard, Chris
Powiązania:
https://bibliotekanauki.pl/articles/1293465.pdf
Data publikacji:
1991
Wydawca:
Polska Akademia Nauk. Instytut Matematyczny PAN
Tematy:
uniform Kadec-Klee property
convergence in measure compact sets
convex sets
normal structure
Lebesgue function spaces
fixed point
nonexpansive mapping
Chebyshev centre
Opis:
In this paper we prove a new convexity property for L₁ that resembles uniform convexity. We then develop a general theory that leads from the convexity property through normal structure to a fixed point property, via a theorem of Kirk. Applying this theory to L₁, we get the following type of normal structure: any convex subset of L₁ of positive diameter that is compact for the topology of convergence locally in measure, must have a radius that is smaller than its diameter. Indeed, a stronger result holds. The Chebyshev centre of any norm bounded, convergence locally in measure compact subset of L₁ must be norm compact. Immediately from normal structure, we get a new proof of a fixed point theorem for L₁ due to Lami Dozo and Turpin.
Źródło:
Studia Mathematica; 1991, 100, 2; 95-108
0039-3223
Pojawia się w:
Studia Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Use of the higher-order plate theory of I. N. Vekua type in problems of dynamics of heterogeneous plane waveguides
Autorzy:
Egorova, O. V.
Rabinskiy, L. N.
Zhavoronok, S. I.
Powiązania:
https://bibliotekanauki.pl/articles/38442354.pdf
Data publikacji:
2020
Wydawca:
Instytut Podstawowych Problemów Techniki PAN
Tematy:
thin-walled waveguides
plates
analytical dynamics
Lagrangian formalism
constraint equations
normal waves
phase frequencies
convergence
Opis:
The dynamics of elastic plane waveguides is studied on the basis of the extended formulation of the plate theory of Nth order. The plate model is based on the Lagrangian formalism of analytical dynamics combined with the dimensional reduction approach and the biorthogonal expansion of the spatial distribution of the displacement. The boundary conditions shifted from the faces onto the base plane are interpreted as constraints for the variational formulation of two-dimensional plate models. The normal wave dispersion in plates is modelled, the convergence of the approximate solutions is studied using the known exact solution for a plane layer as a reference. The proposed plate theory is used to analyse the normal wave dispersion in power graded waveguides of both symmetric and asymmetric structures, the locking phase frequencies for various power indices are computed.
Źródło:
Archives of Mechanics; 2020, 72, 1; 3-25
0373-2029
Pojawia się w:
Archives of Mechanics
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-6 z 6

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies