Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "packing chromatic number" wg kryterium: Temat


Wyświetlanie 1-4 z 4
Tytuł:
A Survey on Packing Colorings
Autorzy:
Brešar, Boštjan
Ferme, Jasmina
Klavžar, Sandi
Rall, Douglas F.
Powiązania:
https://bibliotekanauki.pl/articles/31804166.pdf
Data publikacji:
2020-11-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
packing coloring
packing chromatic number
subcubic graph
S -packing chromatic number
computational complexity
Opis:
If S = (a1, a2, . . .) is a non-decreasing sequence of positive integers, then an S-packing coloring of a graph G is a partition of V (G) into sets X1, X2, . . . such that for each pair of distinct vertices in the set Xi, the distance between them is larger than ai. If there exists an integer k such that V (G) = X1 ∪ ∪ Xk, then the partition is called an S-packing k-coloring. The S-packing chromatic number of G is the smallest k such that G admits an S-packing k-coloring. If ai = i for every i, then the terminology reduces to packing colorings and packing chromatic number. Since the introduction of these generalizations of the chromatic number in 2008 more than fifty papers followed. Here we survey the state of the art on the packing coloring, and its generalization, the S-packing coloring. We also list several conjectures and open problems.
Źródło:
Discussiones Mathematicae Graph Theory; 2020, 40, 4; 923-970
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Independence Number and Packing Coloring of Generalized Mycielski Graphs
Autorzy:
Bidine, Ez Zobair
Gadi, Taoufiq
Kchikech, Mustapha
Powiązania:
https://bibliotekanauki.pl/articles/32222704.pdf
Data publikacji:
2021-08-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
independence number
packing chromatic number
Mycielskians
generalized Mycielskians
Opis:
For a positive integer k ⩾ 1, a graph G with vertex set V is said to be k-packing colorable if there exists a mapping f : V ↦ {1, 2, . . ., k} such that any two distinct vertices x and y with the same color f(x) = f(y) are at distance at least f(x) + 1. The packing chromatic number of a graph G, denoted by χρ(G), is the smallest integer k such that G is k-packing colorable. In this work, we study both independence and packing colorings in the m-generalized Mycielskian of a graph G, denoted μm(G). We first give an explicit formula for α (μm(G)) when m is odd and bounds when m is even. We then use these results to give exact values of α(μm(Kn)) for any m and n. Next, we give bounds on the packing chromatic number, χρ, of μm(G). We also prove the existence of large planar graphs whose packing chromatic number is 4. The rest of the paper is focused on packing chromatic numbers of the Mycielskian of paths and cycles.
Źródło:
Discussiones Mathematicae Graph Theory; 2021, 41, 3; 725-747
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Packing Coloring of Some Undirected and Oriented Coronae Graphs
Autorzy:
Laïche, Daouya
Bouchemakh, Isma
Sopena, Éric
Powiązania:
https://bibliotekanauki.pl/articles/31341695.pdf
Data publikacji:
2017-08-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
packing coloring
packing chromatic number
corona graph
path
cycle
Opis:
The packing chromatic number χρ(G) of a graph G is the smallest integer k such that its set of vertices V(G) can be partitioned into k disjoint subsets V1, . . ., Vk, in such a way that every two distinct vertices in Vi are at distance greater than i in G for every i, 1 ≤ i ≤ k. For a given integer p ≥ 1, the p-corona of a graph G is the graph obtained from G by adding p degree-one neighbors to every vertex of G. In this paper, we determine the packing chromatic number of p-coronae of paths and cycles for every p ≥ 1. Moreover, by considering digraphs and the (weak) directed distance between vertices, we get a natural extension of the notion of packing coloring to digraphs. We then determine the packing chromatic number of orientations of p-coronae of paths and cycles.
Źródło:
Discussiones Mathematicae Graph Theory; 2017, 37, 3; 665-690
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The s-packing chromatic number of a graph
Autorzy:
Goddard, Wayne
Xu, Honghai
Powiązania:
https://bibliotekanauki.pl/articles/743305.pdf
Data publikacji:
2012
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
graph
coloring
packing
broadcast chromatic number
Opis:
Let S = (a₁, a₂, ...) be an infinite nondecreasing sequence of positive integers. An S-packing k-coloring of a graph G is a mapping from V(G) to {1,2,...,k} such that vertices with color i have pairwise distance greater than $a_i$, and the S-packing chromatic number $χ_S(G)$ of G is the smallest integer k such that G has an S-packing k-coloring. This concept generalizes the concept of proper coloring (when S = (1,1,1,...)) and broadcast coloring (when S = (1,2,3,4,...)). In this paper, we consider bounds on the parameter and its relationship with other parameters. We characterize the graphs with $χ_S = 2$ and determine $χ_S$ for several common families of graphs. We examine $χ_S$ for the infinite path and give some exact values and asymptotic bounds. Finally we consider complexity questions, especially about recognizing graphs with $χ_S = 3$.
Źródło:
Discussiones Mathematicae Graph Theory; 2012, 32, 4; 795-806
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies