Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "optimized artificial neural network" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Prediction of Psychoacoustic Metrics Using Combination of Wavelet Packet Transform and an Optimized Artificial Neural Network
Autorzy:
Pourseiedrezaei, Mehdi
Loghmani, Ali
Keshmiri, Mehdi
Powiązania:
https://bibliotekanauki.pl/articles/177762.pdf
Data publikacji:
2019
Wydawca:
Polska Akademia Nauk. Czasopisma i Monografie PAN
Tematy:
sound quality measurement
psychoacoustic metrics
wavelet packet transform
optimized artificial neural network
Opis:
In this paper, a modified sound quality evaluation (SQE) model is developed based on combination of an optimized artificial neural network (ANN) and the wavelet packet transform (WPT). The presented SQE model is a signal processing technique, which can be implemented in current microphones for predicting the sound quality. The proposed method extracts objective psychoacoustic metrics including loudness, sharpness, roughness, and tonality from sound samples, by using a special selection of multi-level nodes of the WPT combined with a trained ANN. The model is optimized using the particle swarm optimization (PSO) and the back propagation (BP) algorithms. The obtained results reveal that the proposed model shows the lowest mean square error and the highest correlation with human perception while it has the lowest computational cost compared to those of the other models and software.
Źródło:
Archives of Acoustics; 2019, 44, 3; 561-573
0137-5075
Pojawia się w:
Archives of Acoustics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Optimized multi layer perceptron artificial neural network based fault diagnosis of induction motor using vibration signals
Autorzy:
Khoualdia, Tarek
Lakehal, Abdelaziz
Chelli, Zoubir
Khoualdia, Kais
Nessaib, Karim
Powiązania:
https://bibliotekanauki.pl/articles/1840889.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Polskie Towarzystwo Diagnostyki Technicznej PAN
Tematy:
induction motor
vibration analysis
monitoring
diagnosis
optimized artificial neural network
sensitivity analysis
silnik indukcyjny
analiza drgań
monitorowanie
diagnoza
sztuczna sieć neuronowa
analiza wrażliwości
Opis:
Installations and the detection of their faults has become a major challenge. In order to develop a reliable approach for monitoring and diagnosis faults of these components, a test rig was mounted. In this article, a Multi Layer Perceptron (MLP) Artificial Neural Network (ANN) has been structured and optimized for online monitoring of induction motors. The input layer of our ANN used eight indicators calculated from the collected time signals and which represent the different states of the motor (Healthy, broken rotor bars, bearing fault and Misalignment) and the output layer used a codified matrix. However, based on L27 Taguchi design, the architecture for the hidden layers of our network is chosen, with the use of the LevenbergMarquardt learning algorithm. Garson's algorithm and connection weight approach showed that there's a great sensitivity of the crest factor, the kurtosis and the variance on the effectiveness of our diagnostic system. Consequently, the obtained results are capable of detecting faults in the induction motor under different operating conditions.
Źródło:
Diagnostyka; 2021, 22, 1; 65-74
1641-6414
2449-5220
Pojawia się w:
Diagnostyka
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies