Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "linear fractional transformation" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Operator fractional-linear transformations: convexity and compactness of image; applications
Autorzy:
Khatskevich, V.
Shul'Man, V.
Powiązania:
https://bibliotekanauki.pl/articles/1388601.pdf
Data publikacji:
1995
Wydawca:
Polska Akademia Nauk. Instytut Matematyczny PAN
Tematy:
Hilbert space
fractional-linear transformation
evolution operator
indefinite metric
Opis:
The present paper consists of two parts. In Section 1 we consider fractional-linear transformations (f.-l.t. for brevity) F in the space $ℒ(X_1,X_2)$ of all linear bounded operators acting from $X_1$ into $X_2$, where $X_1, X_2$ are Banach spaces. We show that in the case of Hilbert spaces $X_1, X_2$ the image F(ℬ) of any (open or closed) ball ℬ ⊂ D(F) is convex, and if ℬ is closed, then F(ℬ) is compact in the weak operator topology (w.o.t.) (Theorem 1.2). These results extend the corresponding results on compactness obtained in [3], [4] under some additional restrictions imposed on F. We also establish that the convexity of the image of f.-l.t. is a characteristic property of Hilbert spaces, that is, if for the f.-l.t. $F:K → (I+K)^{-1}$ the image $F()$ of the open unit ball of the space ℒ(X) is convex, then X is a Hilbert space (Theorem 1.3). In Section 2 we apply the compactness of F(̅) for the closed unit operator ball ̅ to the study of the behavior of solutions to evolution problems in a Hilbert space ℋ. Namely, we establish the exponential dichotomy of solutions for the so-called hyperbolic case (such that the evolution operator is invertible). This is an extension of Theorem 1.1 of [5], where the corresponding assertion was established for the particular case of a Pontryagin space ℋ.
Źródło:
Studia Mathematica; 1995, 116, 2; 189-195
0039-3223
Pojawia się w:
Studia Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Robust Diagnosis of a Proton Exchange Membrane Fuel Cell Using Bond Graph Methodology – Physical and Electrical Faults Detection and Isolation
Autorzy:
Sallami, Abderrahmene
Mzoughi, Dhia
Allagui, Hatem
Mami, Abdelkader
Powiązania:
https://bibliotekanauki.pl/articles/103256.pdf
Data publikacji:
2019
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
robust diagnosis
bond graph approach
PEM fuel cell
linear fractional transformation
performance of the observer
solidna diagnoza
podejście do wykresu wiązań
ogniwo paliwowe PEM
liniowe transformacje ułamkowe
ocena wyników obserwatora
Opis:
Fuel cells are currently experiencing an invigorating resurgence, both at the industrial and research levels. Diagnosis of stack performance is of importance for proton exchange membrane fuel cell (PEMFC) research. In this paper, a bond graph (BG) approach was used for modelling, simulation and robust diagnosis of a PEMFC. In literature, several PEMFC diagnosis methodologies were outlined in terms of efficiency and applicability. This paper described the linear fractional transformations (LFT) method to make it capable for handling the PEMFC diagnostics; an approach based on LFT-BG was developed to diagnose hydration and cells deterioration faults that may occur within a fuel cell. Simulation and experimental diagnostic testing results of a 1.2 kW Nexa fuel cell were presented and used to show the dynamic behaviour of the system variables and assessing the performance of the observer.
Źródło:
Advances in Science and Technology. Research Journal; 2019, 13, 4; 194-203
2299-8624
Pojawia się w:
Advances in Science and Technology. Research Journal
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies