Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "edge-subdivision" wg kryterium: Temat


Wyświetlanie 1-5 z 5
Tytuł:
Edge subdivision and edge multisubdivision versus some domination related parameters in generalized corona graphs
Autorzy:
Dettlaff, M.
Raczek, J.
Yero, I. G.
Powiązania:
https://bibliotekanauki.pl/articles/255785.pdf
Data publikacji:
2016
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
domination
paired domination
independent domination
edge subdivision
edge multisubdivision
corona graph
Opis:
Given a graph G = (V, E), the subdivision of an edge e = uv ∈ E(G) means the substitution of the edge e by a vertex x and the new edges ux and xv. The domination subdivision number of a graph G is the minimum number of edges of G which must be subdivided (where each edge can be subdivided at most once) in order to increase the domination number. Also, the domination multisubdivision number of G is the minimum number of subdivisions which must be done in one edge such that the domination number increases. Moreover, the concepts of paired domination and independent domination subdivision (respectively multisubdivision) numbers are denned similarly. In this paper we study the domination, paired domination and independent domination (subdivision and multisubdivision) numbers of the generalized corona graphs.
Źródło:
Opuscula Mathematica; 2016, 36, 5; 575-588
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
An application of the selected graph theory domination concepts to transportation networks modelling
Autorzy:
Guze, S.
Powiązania:
https://bibliotekanauki.pl/articles/135168.pdf
Data publikacji:
2017
Wydawca:
Akademia Morska w Szczecinie. Wydawnictwo AMSz
Tematy:
domination
edge-subdivision
connected bondage number
bondage-connected number
transportation network
modelling
Opis:
One of the possibilities when modelling a transport network is to use a graph with vertices and edges. They represent the nodes and arcs of such a network respectively. There are dozens of parameters or characteristics that we can describe in graphs, including the different types of domination number and the problems related to it. The main aim of this paper has been to show the possibilities of the application of the selected domination-oriented concepts to modelling and improving the transportation and/or logistics networks. Firstly, the basic description of domination in graph theory has been introduced. The edge-subdivision and bondage number notations and their implementations to the transportation network description and modelling were then proposed. Furthermore, the possible usage of distinguishing concepts in an exemplary academic transportation network has been shown. Finally, the conclusions and future directions of the work have been presented.
Źródło:
Zeszyty Naukowe Akademii Morskiej w Szczecinie; 2017, 52 (124); 97-102
1733-8670
2392-0378
Pojawia się w:
Zeszyty Naukowe Akademii Morskiej w Szczecinie
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Color-bounded hypergraphs, V: host graphs and subdivisions
Autorzy:
Bujtás, Csilla
Tuza, Zsolt
Voloshin, Vitaly
Powiązania:
https://bibliotekanauki.pl/articles/743863.pdf
Data publikacji:
2011
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
mixed hypergraph
color-bounded hypergraph
vertex coloring
arboreal hypergraph
hypertree
feasible set
host graph
edge subdivision
Opis:
A color-bounded hypergraph is a hypergraph (set system) with vertex set X and edge set = {E₁,...,Eₘ}, together with integers $s_i$ and $t_i$ satisfying $1 ≤ s_i ≤ t_i ≤ |E_i|$ for each i = 1,...,m. A vertex coloring φ is proper if for every i, the number of colors occurring in edge $E_i$ satisfies $s_i ≤ |φ(E_i)| ≤ t_i$. The hypergraph ℋ is colorable if it admits at least one proper coloring.
We consider hypergraphs ℋ over a "host graph", that means a graph G on the same vertex set X as ℋ, such that each $E_i$ induces a connected subgraph in G. In the current setting we fix a graph or multigraph G₀, and assume that the host graph G is obtained by some sequence of edge subdivisions, starting from G₀.
The colorability problem is known to be NP-complete in general, and also when restricted to 3-uniform "mixed hypergraphs", i.e., color-bounded hypergraphs in which $|E_i| = 3$ and $1 ≤ s_i ≤ 2 ≤ t_i ≤ 3$ holds for all i ≤ m. We prove that for every fixed graph G₀ and natural number r, colorability is decidable in polynomial time over the class of r-uniform hypergraphs (and more generally of hypergraphs with $|E_i| ≤ r$ for all 1 ≤ i ≤ m) having a host graph G obtained from G₀ by edge subdivisions. Stronger bounds are derived for hypergraphs for which G₀ is a tree.
Źródło:
Discussiones Mathematicae Graph Theory; 2011, 31, 2; 223-238
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Introduction to dominated edge chromatic number of a graph
Autorzy:
Piri, Mohammad R.
Alikhani, Saeid
Powiązania:
https://bibliotekanauki.pl/articles/2051020.pdf
Data publikacji:
2021
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
dominated edge chromatic number
subdivision
operation
corona
Opis:
We introduce and study the dominated edge coloring of a graph. A dominated edge coloring of a graph $G$, is a proper edge coloring of $G$ such that each color class is dominated by at least one edge of $G$. The minimum number of colors among all dominated edge coloring is called the dominated edge chromatic number, denoted by $\chi_{dom}^{\prime}(G)$. We obtain some properties of $\chi_{dom}^{\prime}(G)$ and compute it for specific graphs. Also examine the effects on $\chi_{dom}^{\prime}(G)$ when $G$ is modified by operations on vertex and edge of G. Finally, we consider the k-subdivision of G and study the dominated edge chromatic number of these kind of graphs.
Źródło:
Opuscula Mathematica; 2021, 41, 2; 245-257
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Irreducible No-Hole L(2, 1)-Coloring of Edge-Multiplicity-Paths-Replacement Graph
Autorzy:
Mandal, Nibedita
Panigrahi, Pratima
Powiązania:
https://bibliotekanauki.pl/articles/31342318.pdf
Data publikacji:
2018-05-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
L (2,1)-coloring
no-hole coloring
irreducible coloring
subdivision graph
edge-multiplicity-paths-replacement graph
Opis:
An L(2, 1)-coloring (or labeling) of a simple connected graph G is a mapping f : V (G) → Z+ ∪ {0} such that |f(u)−f(v)| ≥ 2 for all edges uv of G, and |f(u) − f(v)| ≥ 1 if u and v are at distance two in G. The span of an L(2, 1)-coloring f, denoted by span(f), of G is max{f(v) : v ∈ V (G)}. The span of G, denoted by λ(G), is the minimum span of all possible L(2, 1)-colorings of G. For an L(2, 1)-coloring f of a graph G with span k, an integer l is a hole in f if l ∈ (0, k) and there is no vertex v in G such that f(v) = l. An L(2, 1)-coloring is a no-hole coloring if there is no hole in it, and is an irreducible coloring if color of none of the vertices in the graph can be decreased and yield another L(2, 1)-coloring of the same graph. An irreducible no-hole coloring, in short inh-coloring, of G is an L(2, 1)-coloring of G which is both irreducible and no-hole. For an inh-colorable graph G, the inh-span of G, denoted by λinh(G), is defined as λinh(G) = min{span(f) : f is an inh-coloring of G. Given a function h : E(G) → ℕ − {1}, and a positive integer r ≥ 2, the edge-multiplicity-paths-replacement graph G(rPh) of G is the graph obtained by replacing every edge uv of G with r paths of length h(uv) each. In this paper we show that G(rPh) is inh-colorable except possibly the cases h(e) ≥ 2 with equality for at least one but not for all edges e and (i) Δ(G) = 2, r = 2 or (ii) Δ (G) ≥ 3, 2 ≤ r ≤ 4. We find the exact value of λinh(G(rPh)) in several cases and give upper bounds of the same in the remaining. Moreover, we find the value of λ(G(rPh)) in most of the cases which were left by Lü and Sun in [L(2, 1)-labelings of the edge-multiplicity-paths-replacement of a graph, J. Comb. Optim. 31 (2016) 396–404].
Źródło:
Discussiones Mathematicae Graph Theory; 2018, 38, 2; 525-552
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-5 z 5

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies