- Tytuł:
- Asymptotic properties of discrete linear fractional equations
- Autorzy:
-
Anh, P. T.
Babiarz, A.
Czornik, A.
Niezabitowski, M.
Siegmund, S. - Powiązania:
- https://bibliotekanauki.pl/articles/200917.pdf
- Data publikacji:
- 2019
- Wydawca:
- Polska Akademia Nauk. Czytelnia Czasopism PAN
- Tematy:
-
linear discrete-time fractional systems
Caputo equation
Riemann-Liouville equation
Volterra convolution equation
stability - Opis:
- In this paper we study the dynamical behavior of linear discrete-time fractional systems. The first main result is that the norm of the difference of two different solutions of a time-varying discrete-time Caputo equation tends to zero not faster than polynomially. The second main result is a complete description of the decay to zero of the trajectories of one-dimensional time-invariant stable Caputo and Riemann-Liouville equations. Moreover, we present Volterra convolution equations, that are equivalent to Caputo and Riemann-Liouvile equations and we also show an explicit formula for the solution of systems of time-invariant Caputo equations.
- Źródło:
-
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2019, 67, 4; 749-759
0239-7528 - Pojawia się w:
- Bulletin of the Polish Academy of Sciences. Technical Sciences
- Dostawca treści:
- Biblioteka Nauki