Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Markov decision-making process" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Travel management optimization based on air pollution condition using Markov decision process and genetic algorithm (case study: Shiraz city)
Autorzy:
Bagheri, Mohammad
Ghafourian, Hossein
Kashefiolasl, Morteza
Pour, Mohammad Taghi Sadati
Rabbani, Mohammad
Powiązania:
https://bibliotekanauki.pl/articles/223520.pdf
Data publikacji:
2020
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
air pollution
dynamic optimization
genetic algorithm
Markov decision-making process
zarządzanie transportem
optymalizacja
zanieczyszczenie powietrza
algorytm genetyczny
proces decyzyjny Markowa
Opis:
Currently, air pollution and energy consumption are the main issues in the transportation area in large urban cities. In these cities, most people choose their transportation mode according to corresponding utility including traveller's and trip’s characteristics. Also, there is no effective solution in terms of population growth, urban space, and transportation demands, so it is essential to optimize systematically travel demands in the real network of roads in urban areas, especially in congested areas. Travel Demand Management (TDM) is one of the well-known ways to solve these problems. TDM defined as a strategy that aims to maximize the efficiency of the urban transport system by granting certain privileges for public transportation modes, Enforcement on the private car traffic prohibition in specific places or times, increase in the cost of using certain facilities like parking in congested areas. Network pricing is one of the most effective methods of managing transportation demands for reducing traffic and controlling air pollution especially in the crowded parts of downtown. A little paper may exist that optimize urban transportations in busy parts of cities with combined Markov decision making processes with reward and evolutionary-based algorithms and simultaneously considering customers’ and trip’s characteristics. Therefore, we present a new network traffic management for urban cities that optimizes a multi-objective function that related to the expected value of the Markov decision system’s reward using the Genetic Algorithm. The planned Shiraz city is taken as a benchmark for evaluating the performance of the proposed approach. At first, an analysis is also performed on the impact of the toll levels on the variation of the user and operator cost components, respectively. After choosing suitable values for the network parameters, simulation of the Markov decision process and GA is dynamically performed, then the optimal decision for the Markov decision process in terms of total reward is obtained. The results illustrate that the proposed cordon pricing has significant improvement in performance for all seasons including spring, autumn, and winter.
Źródło:
Archives of Transport; 2020, 53, 1; 89-102
0866-9546
2300-8830
Pojawia się w:
Archives of Transport
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Innovative advantages ranking : a new approach
Autorzy:
Gogodze, Joseph
Powiązania:
https://bibliotekanauki.pl/articles/406269.pdf
Data publikacji:
2019
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
global innovation index
Markov chain
analytic hierarchy process
multi-objective decision
making problem
globalny indeks innowacji
łańcuch Markowa
proces hierarchii analitycznej
Opis:
Assessing/ranking the innovative advantages of countries is a problem of current interest. However, the set of tools used for this purpose are very narrow and often prone to criticism. The aim of this study is to somewhat extend the arsenal of methods used to this end. For this purpose, based on a data set from the Global Innovation Index, this study develops a special multi-objective decision-making problem, the aim of which is to identify the “best countries” in the sense of their innovative advantage. Moreover, applying ranking methods (in our case the Markov-chain method and analytic hierarchy process) to this multi-objective decision-making problem, we obtain new alternative ratings/rankings of the innovative advantages of countries.
Źródło:
Operations Research and Decisions; 2019, 29, 1; 5-15
2081-8858
2391-6060
Pojawia się w:
Operations Research and Decisions
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies