- Tytuł:
- On the eigenvalues of a 2 x 2 block operator matrix
- Autorzy:
-
Muminov, M. I.
Rasulov, T. H. - Powiązania:
- https://bibliotekanauki.pl/articles/254735.pdf
- Data publikacji:
- 2015
- Wydawca:
- Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
- Tematy:
-
block operator matrix
Fock space
discrete and essential spectra
Birman-Schwinger principle
Efimov effect
discrete spectrum asymptotics
embedded eigenvalues - Opis:
- A 2 x 2 block operator matrix H acting in the direct sum of one- and two-particle subspaces of a Fock space is considered. The existence of infinitely many negative eigenvalues of H22 (the second diagonal entry of H) is proved for the case where both of the associated Friedrichs models have a zero energy resonance. For the number N(z) of eigenvalues of H22 lying below z < 0, the following asymptotics is found [formula]. Under some natural conditions the infiniteness of the number of eigenvalues located respectively inside, in the gap, and below the bottom of the essential spectrum of H is proved.
- Źródło:
-
Opuscula Mathematica; 2015, 35, 3; 371-395
1232-9274
2300-6919 - Pojawia się w:
- Opuscula Mathematica
- Dostawca treści:
- Biblioteka Nauki