Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Wash, Kirsti" wg kryterium: Autor


Wyświetlanie 1-2 z 2
Tytuł:
Worm Colorings
Autorzy:
Goddard, Wayne
Wash, Kirsti
Xu, Honghai
Powiązania:
https://bibliotekanauki.pl/articles/31339329.pdf
Data publikacji:
2015-08-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
coloring
rainbow
monochromatic
forbidden
path
Opis:
Given a coloring of the vertices, we say subgraph H is monochromatic if every vertex of H is assigned the same color, and rainbow if no pair of vertices of H are assigned the same color. Given a graph G and a graph F, we define an F-WORM coloring of G as a coloring of the vertices of G without a rainbow or monochromatic subgraph H isomorphic to F. We present some results on this concept especially as regards to the existence, complexity, and optimization within certain graph classes. The focus is on the case that F is the path on three vertices.
Źródło:
Discussiones Mathematicae Graph Theory; 2015, 35, 3; 571-584
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
2-Tone Colorings in Graph Products
Autorzy:
Loe, Jennifer
Middelbrooks, Danielle
Morris, Ashley
Wash, Kirsti
Powiązania:
https://bibliotekanauki.pl/articles/31339114.pdf
Data publikacji:
2015-02-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
t-tone coloring
Cartesian product
direct product
strong product
Opis:
A variation of graph coloring known as a t-tone k-coloring assigns a set of t colors to each vertex of a graph from the set {1, . . ., k}, where the sets of colors assigned to any two vertices distance d apart share fewer than d colors in common. The minimum integer k such that a graph G has a t- tone k-coloring is known as the t-tone chromatic number. We study the 2-tone chromatic number in three different graph products. In particular, given graphs G and H, we bound the 2-tone chromatic number for the direct product G×H, the Cartesian product G□H, and the strong product G⊠H.
Źródło:
Discussiones Mathematicae Graph Theory; 2015, 35, 1; 55-72
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies