Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Vozhehova, Raisa" wg kryterium: Autor


Wyświetlanie 1-2 z 2
Tytuł:
Modeling Safflower Seed Productivity in Dependence on Cultivation Technology by the Means of Multiple Linear Regression Model
Autorzy:
Vozhehova, Raisa
Fedorchuk, Mykhailo
Kokovikhin, Serhii
Lykhovyd, Pavlo
Nesterchuk, Vasyl
Mrynskii, Ivan
Markovska, Olena
Powiązania:
https://bibliotekanauki.pl/articles/124374.pdf
Data publikacji:
2019
Wydawca:
Polskie Towarzystwo Inżynierii Ekologicznej
Tematy:
cultivation technology
prediction
statistical analysis
yields
Opis:
The results of the study devoted to the evaluation of reliability of the multiple linear regression model for safflower seed yields prediction were presented. Regression model reliability was assessed by the direct comparison of the modeled yields values with the true ones, which were obtained in the field trials with safflower during 2010-2012. The trials were dedicated to study of the effect of various cultivation technology treatments on the safflower seed productivity at the irrigated lands of the South of Ukraine. The agrotechnological factors, which were investigated in the experiments, include: A – soil tillage: A1 – disking at the depth of 14–16 cm; A2 – plowing at the depth of 20–22 cm; B – time of sowing: B1 – 3rd decade of March; B2 – 2nd decade of April; B3 – 3rd decade of April; C – inter-row spacing: C1 – 30 cm; C2- 45 cm; C3 – 60 cm; D – mineral fertilizers dose: D1 – N0P0; D2 – N30P30; D3 – N60P60; D4 – N90P90. Regression analysis allowed us to create a model of the crop productivity, which looks as follows: Y = –1.3639 + 0.0213Х1 + 0.0017Х2 – 0.0121Х3 + 0.0045Х4, where: Y is safflower seed yields, t ha-1; Х1 – soil tillage depth, cm; Х2 – sum of the positive temperatures above 10°С; Х3 – inter-row spacing, cm; Х4 – mineral fertilizers dose, kg ha-1. A direct comparison of the modeled safflower seed yield values with the true ones showed a very slight inaccuracy of the developed model. The maximum amplitude of the residuals averaged to 0.27 t ha-1. Therefore, we conclude that multiple linear regression analysis can be successfully used in purposes of agricultural modeling.
Źródło:
Journal of Ecological Engineering; 2019, 20, 4; 8-13
2299-8993
Pojawia się w:
Journal of Ecological Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Statistical yielding models of some irrigated vegetable crops in dependence on water use and heat supply
Autorzy:
Vozhehova, Raisa
Kokovikhin, Sergii
Lykhovyd, Pavlo V.
Balashova, Halyna
Lavrynenko, Yuriy
Biliaieva, Iryna
Markovska, Olena
Powiązania:
https://bibliotekanauki.pl/articles/292829.pdf
Data publikacji:
2020
Wydawca:
Instytut Technologiczno-Przyrodniczy
Tematy:
linear model
multiple linear regression analysis
onion
potato
tomato
yield modelling
Opis:
Statistical analysis is helpful for better understanding of the processes which take place in agricultural ecosystems. Particular attention should be paid to the processes of crops’ productivity formation under the influence of natural and anthropogenic factors. The goal of our study was to provide new theoretical knowledge about the dependence of vegetable crops’ productivity on water supply and heat income. The study was conducted in the irrigated conditions of the semi-arid cold Steppe zone on the fields of the Institute of Irrigated Agriculture of NAAS, Kherson, Ukraine. We studied the historical data of productivity of three most common in the region vegetable crops: potato, tomato, onion. The crops were cultivated by using the generally accepted in the region agrotechnology. Historical yielding and meteorological data of the period 1990–2016 were used to develop the models of the vegetable crops’ productivity. We used two approaches: development of pair linear models in three categories (“yield – water use”, “yield – sum of the effective air temperatures above 10°C”); development of complex linear regression models taking into account such factors as total water use, and temperature regime during the crops’ vegetation. Pair linear models of the crops’ productivity showed that the highest effect on the yields of potato and onion has the water use index (R2 of 0.9350 and 0.9689, respectively), and on the yield of tomato – temperature regime (R2 of 0.9573). The results of pair analysis were proved by the multiple regression analysis that revealed the same tendencies in the crop yield formation depending on the studied factors.
Źródło:
Journal of Water and Land Development; 2020, 45; 190-197
1429-7426
2083-4535
Pojawia się w:
Journal of Water and Land Development
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies