- Tytuł:
- Use of machine learning algorithm for the better prediction of SR peculiarities of WEDM of Nimonic-90 superalloy
- Autorzy:
-
Singh Nain, S.
Sai, R.
Sihag, P.
Vambol, S.
Vambol, V. - Powiązania:
- https://bibliotekanauki.pl/articles/378951.pdf
- Data publikacji:
- 2019
- Wydawca:
- Stowarzyszenie Komputerowej Nauki o Materiałach i Inżynierii Powierzchni w Gliwicach
- Tematy:
-
support vector machine
Gaussian process
artificial neural network
WEDM
maszyna wektorów nośnych
proces gaussowski
sztuczna sieć neuronowa - Opis:
- Purpose: With the end goal to fulfil stringent structural shape of the component in aeronautics industry, machining of Nimonic-90 super alloy turns out to be exceptionally troublesome and costly by customary procedures, for example, milling, grinding, turning, etc. For that reason, the manufacture and design engineer worked on contactless machining process like EDM and WEDM. Based on previous studies, it has been observed that rare research work has been published pertaining to the use of machine learning in manufacturing. Therefore the current research work proposed the use of SVM, GP and ANN methods to evaluate the WEDM of Nimonic-90. Design/methodology/approach: The experiments have been performed on the WEDM considering five process variables. The Taguchi L 18 mixed type array is used to formulate the experimental plan. The surface roughness is checked by using surface contact profilometre. The evolutionary algorithms like SVM, GP and ANN approaches have been used to evaluate the SR of WEDM of Nimonic-90 super alloy. Findings: The entire models present the significant results for the better prediction of SR peculiarities of WEDM of Nimonic-90 superalloy. The GP PUK kernel model is dominating the entire model. Research limitations/implications: The investigation was carried for the Nimonic-90 super alloy is selected as a work material. Practical implications: The results of this study provide an opportunity to conduct contactless processing superalloy Nimonic-90. At the same time, this contactless process is much cheaper, faster and more accurate. Originality/value: An experimental work has been reported on the WEDM of Udimet-L605 and use of advance machine learning algorithm and optimization approaches like SVM, and GRA is recommended. A study on WEDM of Inconel 625 has been explored and optimized the process using Taguchi coupled with grey relational approach. The applicability of some evolutionary algorithm like random forest, M5P, and SVM also tested to evaluate the WEDM of Udimet-L605.The fuzzy- inference and BP-ANN approached is used to evaluate the WEDM process. The multi-objective optimization using ratio analysis approach has been utilized to evaluate the WEDM of high carbon & chromium steel. But this current research work proposed the use of SVM, GP and ANN methods to evaluate the WEDM of Nimonic-90.
- Źródło:
-
Archives of Materials Science and Engineering; 2019, 95, 1; 12-19
1897-2764 - Pojawia się w:
- Archives of Materials Science and Engineering
- Dostawca treści:
- Biblioteka Nauki