Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Pieczykolan, J." wg kryterium: Autor


Wyświetlanie 1-2 z 2
Tytuł:
The ATLAS experiment on-line monitoring and filtering as an example of real-time application
System monitoringu i filtracji eksperymentu ATLAS jako przykład aplikacji czasu rzeczywistego
Autorzy:
Korcyl, K.
Szymocha, T.
Funika, W.
Kitowski, J.
Słota, R.
Bałos, K.
Dutka, Ł.
Guzy, K.
Kryza, T.
Pieczykolan, J.
Powiązania:
https://bibliotekanauki.pl/articles/305349.pdf
Data publikacji:
2008
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
fizyka wysokich energii
przetwarzanie w czasie rzeczywistym
system filtracji
zdalne farmy
high energy physics
real-time procesing
trigger system
remote farms
Opis:
The ATLAS detector, recording LHC particles' interactions, produces events with rate of 40 MHz and size of 1.6 MB. The processes with new and interesting physics phenomena are very rare, thus an efficient on-line filtering system (trigger) is necessary. The asynchronous part of that system relays on few thousands of computing nodes running the filtering software. Applying refined filtering criteria results in increase of processing times what may lead to lack of processing resources installed on CERN site. We propose extension to this part of the system based on submission of the real-time filtering tasks into the Grid.
Detektor ATLAS, rejestrujący zderzenia protonów rozpędzanych w zderzaczu LHC, będzie generował przypadki o rozmiarze 1.6MB z częstotliwością 40MHz. Aby wyselekcjonować bardzo rzadko występujące przypadki z interesującymi oddziaływaniami fizycznymi, konieczne będzie zastosowanie wydajnego systemu filtracji (trigger). Część asynchroniczna takiego systemu wykorzystuje kilka tysięcy komputerów, na których wykonywane jest oprogramowanie filtrujące. Zwiększenie selektywności systemu wymaga zwiększenia czasu procesowania, co może doprowadzić do wyczerpania zasobów komputerowych zainstalowanych w CERN-ie. Proponujemy rozszerzenie tej części systemu poprzez umożliwienie wykonywania oprogramowania filtrującego w czasie rzeczywistym na komputerach w środowisku gridowym.
Źródło:
Computer Science; 2008, 9; 77-86
1508-2806
2300-7036
Pojawia się w:
Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Investigation of the Efficiency of the UV/H2O2 Process on the Removal of Dye Acid Green 16 from Aqueous Solutions: Process Optimization and Toxicity Assessment
Badania efektywności procesu UV/H2O2 w usuwaniu barwnika Acid Green 16 z roztworów wodnych: optymalizacja procesu i ocena toksyczności
Autorzy:
Płonka, I.
Pieczykolan, B.
Barbusiński, K.
Kalka, J.
Thomas, M.
Piskorz, P. J.
Powiązania:
https://bibliotekanauki.pl/articles/231882.pdf
Data publikacji:
2017
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Biopolimerów i Włókien Chemicznych
Tematy:
Acid Green 16
decolorization
toxicity
UV/H2O2 process
odbarwianie
toksyczność
proces UV/H2O2
Opis:
The effects of the removal of Acid Green 16 (100 mg AG-16/dm3, COD=111 mg O2/dm3) from aqueous solutions by the UV/H2O2 process in UV reactors: low pressure lamp (LP, 15W) and medium pressure lamps (MP, 150W) are presented. The best results of AG-16 removal were obtained for H2O2 250 mg/dm3 (99.85%, AG-16=0.15 mg/dm3) and 200 mg/dm3 (99.80%, AG-16=0.20 mg/dm3) for LP and MP lamps, respectively, with the same parameters, i.e. 30 min reaction time and pH 6. Under these conditions, the AG-16 solution was completely discolored and the COD removal efficiency was 57.3% (LP lamp) and 63,4% (MP lamp). However, at optimum conditions of decolorisation, no decrease in the toxicity of solutions (Microtox test) was observed. For the MP lamp, the toxicity of solutions remained at the same level as in the initial solutions (Toxicity Unit, TU=3), whereas in the case of the LP lamp, the TU value after the process increased to 6. In conclusion, the AOPs for toxic pollutants should also be optimised from the point of view of toxicity.
Przedstawiono efekty usuwania barwnika Acid Green 16 (100 mg AG-16/dm3, ChZT=110.9 mg O2/dm3) z roztworów wodnych metodą UV/H2O2 z zastosowaniem dwóch reaktorów UV: z lampą niskociśnieniową (LP, 15W) i średniociśnieniową (MP, 150W). Najlepsze efekty usunięcia AG-16 uzyskano dla H2O2 250 mg/dm3 (99.85%, AG-16=0.15 mg/dm3) i 200 mg/dm3 (99.80%, AG-16=0.20 mg/dm3) odpowiednio dla lamp LP i MP przy tych samych pozostałych parametrach, tj. czasie reakcji 30 min i pH 6. W tych warunkach uzyskano całkowite odbarwienie roztworów barwnika AG-16, a obniżenie wartości ChZT wynosiło 57.3% (lampa LP) i 63,4% (lampa MP). Dla wyznaczonych optymalnych warunków dekoloryzacji roztworów AG-16 ich toksyczność (Microtox test) nie uległa obniżeniu. Dla lampy MP toksyczność pozostała na tym samym poziomie jak roztworów wyjściowych (Jednostka Toksyczności, TU=3), natomiast w przypadku lampy LP wartość TU wzrosła do 6. Wynika z tego, że procesy AOPs dla zanieczyszczeń toksycznych powinny być optymalizowane także z uwzględnieniem analizy toksyczności.
Źródło:
Fibres & Textiles in Eastern Europe; 2017, 6 (126); 103-107
1230-3666
2300-7354
Pojawia się w:
Fibres & Textiles in Eastern Europe
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies