Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Manuel, Paul" wg kryterium: Autor


Wyświetlanie 1-3 z 3
Tytuł:
On the Isometric Path Partition Problem
Autorzy:
Manuel, Paul
Powiązania:
https://bibliotekanauki.pl/articles/32323579.pdf
Data publikacji:
2021-11-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
path cover problem
isometric path partition problem
isometric path cover problem
multi-dimensional grids
cylinder
torus
Opis:
The isometric path cover (partition) problem of a graph consists of finding a minimum set of isometric paths which cover (partition) the vertex set of the graph. The isometric path cover (partition) number of a graph is the cardinality of a minimum isometric path cover (partition). We prove that the isometric path partition problem and the isometric k-path partition problem for k 3 are NP-complete on general graphs. Fisher and Fitzpatrick in [The isometric number of a graph, J. Combin. Math. Combin. Comput. 38 (2001) 97–110] have shown that the isometric path cover number of the (r × r)-dimensional grid is ⌈2r/3 ⌉. We show that the isometric path cover (partition) number of the (r × s)-dimensional grid is s when r s(s − 1). We establish that the isometric path cover (partition) number of the (r × r)-dimensional torus is r when r is even and is either r or r + 1 when r is odd. Then, we demonstrate that the isometric path cover (partition) number of an r-dimensional Benes network is 2r. In addition, we provide partial solutions for the isometric path cover (partition) problems for cylinder and multi-dimensional grids. We apply two di erent techniques to achieve these results.
Źródło:
Discussiones Mathematicae Graph Theory; 2021, 41, 4; 1077-1089
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Strong Geodetic Problem in Networks
Autorzy:
Manuel, Paul
Klavžar, Sandi
Xavier, Antony
Arokiaraj, Andrew
Thomas, Elizabeth
Powiązania:
https://bibliotekanauki.pl/articles/32083731.pdf
Data publikacji:
2020-02-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
geodetic problem
strong geodetic problem
Apollonian networks
Sierpiński graphs
computational complexity
Opis:
In order to model certain social network problems, the strong geodetic problem and its related invariant, the strong geodetic number, are introduced. The problem is conceptually similar to the classical geodetic problem but seems intrinsically more difficult. The strong geodetic number is compared with the geodetic number and with the isometric path number. It is determined for several families of graphs including Apollonian networks. Applying Sierpiński graphs, an algorithm is developed that returns a minimum path cover of Apollonian networks corresponding to the strong geodetic number. It is also proved that the strong geodetic problem is NP-complete.
Źródło:
Discussiones Mathematicae Graph Theory; 2020, 40, 1; 307-321
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A Note on the Locating-Total Domination in Graphs
Autorzy:
Miller, Mirka
Rajan, R. Sundara
Jayagopal, R.
Rajasingh, Indra
Manuel, Paul
Powiązania:
https://bibliotekanauki.pl/articles/31341658.pdf
Data publikacji:
2017-08-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
dominating set
total dominating set
locating-dominating set
locating-total dominating set
regular graphs
Opis:
In this paper we obtain a sharp (improved) lower bound on the locating-total domination number of a graph, and show that the decision problem for the locating-total domination is NP-complete.
Źródło:
Discussiones Mathematicae Graph Theory; 2017, 37, 3; 745-754
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies