Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Denton, Z." wg kryterium: Autor


Wyświetlanie 1-3 z 3
Tytuł:
Monotone method for Riemann-Liouville multi-order fractional differential systems
Autorzy:
Denton, Z.
Powiązania:
https://bibliotekanauki.pl/articles/254754.pdf
Data publikacji:
2016
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
fractional differential systems
multi-order systems
lower and upper solutions
monotone method
Opis:
In this paper we develop the monotone method for nonlinear multi-order N-systems of Riemann-Liouville fractional differential equations. That is, a hybrid system of nonlinear equations of orders qi where 0 < qi < 1. In the development of this method we recall any needed existence results along with any necessary changes. Through the method's development we construct a generalized multi-order Mittag-Leffler function that fulfills exponential-like properties for multi-order systems. Further we prove a comparison result paramount for the discussion of fractional multi-order inequalities that utilizes lower and upper solutions of the system. The monotone method is then developed via the construction of sequences of linear systems based on the upper and lower solutions, and are used to approximate the solution of the original nonlinear multi-order system.
Źródło:
Opuscula Mathematica; 2016, 36, 2; 189-206
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Monotone iterative technique for finite systems of nonlinear Riemann-,Lliouville fractional differential equations
Autorzy:
Denton, Z.
Vatsala, A.S.
Powiązania:
https://bibliotekanauki.pl/articles/255746.pdf
Data publikacji:
2011
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
fractional differential systems
coupled lower and upper solutions
mixed quasimonotone property
Opis:
Comparison results of the nonlinear scalar Riemann-Liouville fractional differential equation of order q, 0 < q ≤ 1, are presented without requiring Hölder continuity assumption. Monotone method is developed for finite systems of fractional differential equations of order q, using coupled upper and lower solutions. Existence of minimal and maximal solutions of the nonlinear fractional differential system is proved.
Źródło:
Opuscula Mathematica; 2011, 31, 3; 327-339
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Existence of minimal and maximal solutions to RL fractional integro-differential initial value problems
Autorzy:
Denton, Z.
Ramirez, J. D.
Powiązania:
https://bibliotekanauki.pl/articles/255901.pdf
Data publikacji:
2017
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
Riemann Liouville derivative
integro-differential equation
monotone method
Opis:
In this work we investigate integro-differential initial value problems with Riemann Liouville fractional derivatives where the forcing function is a sum of an increasing function and a decreasing function. We will apply the method of lower and upper solutions and develop two monotone iterative techniques by constructing two sequences that converge uniformly and monotonically to minimal and maximal solutions. In the first theorem we will construct two natural sequences and in the second theorem we will construct two intertwined sequences. Finally, we illustrate our results with an example.
Źródło:
Opuscula Mathematica; 2017, 37, 5; 705-724
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies