Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Deniz, S." wg kryterium: Autor


Wyświetlanie 1-2 z 2
Tytuł:
Vertical extension of a multi-storey reinforced concrete building
Autorzy:
Bahrami, A.
Deniz, S.
Moalin, H.
Powiązania:
https://bibliotekanauki.pl/articles/2174183.pdf
Data publikacji:
2022
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
konstrukcja żelbetowa
ugięcie
budynek żelbetowy
vertical extension
reinforced concrete building
utilisation ratio
reaction force
deflection
Opis:
The global population is increasing annually; thus, there is a need for more housing and buildings worldwide. As cities grow outward and buildable lands become scarce, it is necessary to increase the height of existing buildings in cities, especially where the height of the buildings is low. For crowded cities, the storey extension is an increasingly popular measure that can meet market demand for centrally located houses. This paper examines the possibility of the vertical extension of an existing (reference) reinforced concrete building in Gävle in Sweden. The StruSoft FEM-Design program is employed to carry out the research. The building is firstly modelled, analysed, and designed completely. Thereafter, a storey extension is conducted vertically. The stresses and utilisation ratios of the load-bearing elements of the reference and extended buildings are assessed. It is found that some of the load-bearing elements of the building after the extension need strengthening. Different practical strengthening solutions are proposed. It is concluded that the building can successfully withstand the vertical extension after applying these proposed solutions. The maximum vertical reaction forces of the reference and extended buildings are obtained and compared. A comparison of the deflections of the buildings is made. The structural stability of the buildings is evaluated as well.
Źródło:
International Journal of Applied Mechanics and Engineering; 2022, 27, 1; 1--20
1734-4492
2353-9003
Pojawia się w:
International Journal of Applied Mechanics and Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Morphological analysis of organo-montmorillonites via MD simulations
Autorzy:
Karataş, Deniz
Tekin, Adem
Can, Muhammed F.
Xu, Zhenghe
Çelik, Mehmet S.
Powiązania:
https://bibliotekanauki.pl/articles/2146936.pdf
Data publikacji:
2022
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
organo-montmorillonite
tetradecyl dimethyl ethyl benzyl ammonium chloride
molecular dynamics simulation
cation exchange capacity
binding energy
Opis:
Adsorption on clay surfaces has been studied intensively in recent years. The most curious subject of these studies, which are generally experimental, is how the surfactants are adsorbed at the atomic level to the surface. In this study, the adsorption of quaternary amine salt (tetradecyl dimethyl ethyl benzyl ammonium chloride–TDEBAC) to sodium montmorillonite (Na-MMT) with various cation exchange capacities (CEC) was investigated by using Molecular Dynamics (MD) simulation. In the simulations, as in the experimental studies, it was revealed that the surfactants were both adsorbed on to basal surfaces and settled between the layers. From the morphological analysis obtained from MD simulations, it was calculated that the inter-molecular interaction between the layers was higher than on the basal surface. For example, for the model with 118 CEC motif, the binding energy of all three surfactants in the models with the hydrophilic heads facing the same direction was calculated as -678.18 kcal/mol at the basal surface, while this value was found to be -688.90 kcal/mol in the interlayer. The more striking result is that in the simulations made by turning the head of the middle one of the three surfactants towards the tails of the right and left ones, only -34.86 kcal/mol binding energy was calculated on the basal surface, while this value was -525.63 kcal/mol in the interlayer. As compared middle reversed surfactant models with the same direction ones, despite increased CEC the intermolecular interaction decreased for the basal surface, but the interaction increased between the layers.
Źródło:
Physicochemical Problems of Mineral Processing; 2022, 58, 5; art. no. 152499
1643-1049
2084-4735
Pojawia się w:
Physicochemical Problems of Mineral Processing
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies