- Tytuł:
- Approximate state-space and transfer function models for 2x2 linear hyperbolic systems with collocated boundary inputs
- Autorzy:
- Bartecki, Krzysztof
- Powiązania:
- https://bibliotekanauki.pl/articles/330464.pdf
- Data publikacji:
- 2020
- Wydawca:
- Uniwersytet Zielonogórski. Oficyna Wydawnicza
- Tematy:
-
distributed parameter system
hyperbolic equations
approximation model
state space
transfer function
układ o parametrach rozłożonych
równanie hiperboliczne
model aproksymacyjny
przestrzeń stanu
funkcja przesyłowa - Opis:
- Two approximate representations are proposed for distributed parameter systems described by two linear hyperbolic PDEs with two time- and space-dependent state variables and two collocated boundary inputs. Using the method of lines with the backward difference scheme, the original PDEs are transformed into a set of ODEs and expressed in the form of a finite number of dynamical subsystems (sections). Each section of the approximation model is described by state-space equations with matrix-valued state, input and output operators, or, equivalently, by a rational transfer function matrix. The cascade interconnection of a number of sections results in the overall approximation model expressed in finite-dimensional state-space or rational transfer function domains, respectively. The discussion is illustrated with a practical example of a parallel-flow double-pipe heat exchanger. Its steady-state, frequency and impulse responses obtained from the original infinite-dimensional representation are compared with those resulting from its approximate models of different orders. The results show better approximation quality for the “crossover” input–output channels where the in-domain effects prevail as compared with the “straightforward” channels, where the time-delay phenomena are dominating.
- Źródło:
-
International Journal of Applied Mathematics and Computer Science; 2020, 30, 3; 475-491
1641-876X
2083-8492 - Pojawia się w:
- International Journal of Applied Mathematics and Computer Science
- Dostawca treści:
- Biblioteka Nauki