- Tytuł:
- Comparative analysis of Riemann-Liouville, Caputo-Fabrizio, and Atangana-Baleanu integrals
- Autorzy:
-
Shaikh, Asif Ali
Qureshi, Sania - Powiązania:
- https://bibliotekanauki.pl/articles/2175503.pdf
- Data publikacji:
- 2022
- Wydawca:
- Politechnika Częstochowska. Wydawnictwo Politechniki Częstochowskiej
- Tematy:
-
fractional operator
gamma function
absolute error
convergence
operator ułamkowy
funkcja gamma
błąd bezwzględny
konwergencja - Opis:
- This study analyzes the most commonly used operators of the Riemann-Liouville, the Caputo-Fabrizio, and the Atangana-Baleanu integral operators. Firstly, a numerical scheme for the Riemann-Liouville fractional integral has been discussed. Then, two numerical techniques have been suggested for the remaining two operators. The experimental order of convergence for the schemes is further supported by the computations of absolute relative error at the final nodal point over the integration interval [0, T ]. Comparative analysis of the integrals reveals that the Riemann-Liouville fractional integral yields the most minor errors and the most significant experimental order of convergence in the majority of functions, particularly when the fractional-order parameter α → 0. It is worth noting that the Atangana-Baleanu has proved to be an essential operator for solving many dynamical systems that a single RL operator cannot handle. All of the three integral operators coincide with each other for α = 1. Mathematica 11.3 for an Intel(R) Core(TM) i3-4500U procesor running on 1.70 GHz is used to carry out all the necessary computations.
- Źródło:
-
Journal of Applied Mathematics and Computational Mechanics; 2022, 21, 1; 91--101
2299-9965 - Pojawia się w:
- Journal of Applied Mathematics and Computational Mechanics
- Dostawca treści:
- Biblioteka Nauki