Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Markov Chain Monte Carlo" wg kryterium: Temat


Wyświetlanie 1-1 z 1
Tytuł:
Triple-goal Estimation of Unemployment Rates for U.S. States Using the U.S. Current Population Survey Data
Autorzy:
Bonnéry, Daniel
Cheng, Yang
Ha, Neung Soo
Lahiri, Partha
Powiązania:
https://bibliotekanauki.pl/articles/465991.pdf
Data publikacji:
2015
Wydawca:
Główny Urząd Statystyczny
Tematy:
complex survey data
empirical distribution function
Monte Carlo Markov Chain
rank
risk
small area estimation
Opis:
In this paper, we first develop a triple-goal small area estimation methodology for simultaneous estimation of unemployment rates for U.S. states using the Current Population Survey (CPS) data and a two-level random sampling variance normal model. The main goal of this paper is to illustrate the utility of the triple-goal methodology in generating a single series of unemployment rate estimates for three separate purposes: developing estimates for individual small area means, producing empirical distribution function (EDF) of true small area means, and the ranking of the small areas by true small area means. We achieve our goal using a Monte Carlo simulation experiment and a real data analysis.
Źródło:
Statistics in Transition new series; 2015, 16, 4; 511-522
1234-7655
Pojawia się w:
Statistics in Transition new series
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-1 z 1

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies