Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Yu, M" wg kryterium: Autor


Wyświetlanie 1-2 z 2
Tytuł:
Rasčet stacionarnogo temperaturnogo polâ v mnogoslojnoj plite s učetom vnutrennih istočnikov tepla pri usloviâh neidealʹnogo teplovogo kontakta meždu sloâmi
Calculation of a Stationary Temperature Field in a Multi-Layerd Panel with due regard to Internal Heat Sources Containing Non-Ideal Thermal Links Between Layers
Obliczenie stacjonarnego pola temperatury w wielowarstwowej płycie z uwzględnieniem wewnętrznych źródeł ciepła w warunkach nieidealnego kontaktu termicznego między warstwami
Autorzy:
Taciy, R. M.
Pazen, O. Yu.
Powiązania:
https://bibliotekanauki.pl/articles/373099.pdf
Data publikacji:
2015
Wydawca:
Centrum Naukowo-Badawcze Ochrony Przeciwpożarowej im. Józefa Tuliszkowskiego
Tematy:
temperature
heat flux
quasi-derived
multi-layer panels
Cauchy matrix
Dirac delta function
differential equations concerning impulses
temperatura
gęstość strumienia ciepła
płyta wielowarstwowa
równania różniczkowe z oddziaływaniem impulsowym
Opis:
Aim: The article examines the issue of a stationary temperature field distribution for a multi-layered panel, in the presence of both dispersed and concentrated internal heat sources, taking into account imperfect heat transfer conditions between individual layers. Introduction: Testing of temperature fields for multi-layered structures continues to be a target of interest for many studies, because structures of this type have many applications in the construction industry. High temperatures pose a threat of structural damage associated with the emergence of significant thermal stress during the heating process. It is commonly known, that the computation of this stress is only possible by solving appropriate heat conductivity equations. Many scientific papers are devoted to the determination of temperature fields in multi-layer structures. Majority of these studies do not take into account thermal sources or the application of coupled equation methods. When the number of layers becomes n> 3 the allotted time to, and volume of calculations increases dramatically. Moreover, a procedure for deriving the coefficient for partial-differential equations inevitably leads to the problem of multiplicity in generalised distributions. This study established that such a procedure is not necessary, and can be substituted by applying a quasi-derived concept. Methodology: At the equation formulation stage, the coefficient of thermal conductivity and intensity of internal sources of heat were recorded as splains using characteristic functions of half-length intervals and inclusion of the intensity of concentrated sources is accomplished by using the Dirac δ-function, which is introduced on the right hand side of the corresponding quasi differential equation (QDE). To such an equation are added known stress conditions and starting position, and further augmented by discretionary two-point boundary conditions. Subsequently, with the aid of the quasi-derived concept, the described equation is linked with the Cauchy equation of equivalence for appropriate arrangement of differential equations concerning impulses. Conclusions: The study identifies a solution to the equation dealing with the issue of a stationary temperature field distribution for a multi-layered panel, by taking account of dispersed as well as concentrated sources of heat produced in imperfect heat transfer conditions between layers. The paper articulates an example of temperature field calculations for an eight layered panel, which is exposed to different thermal influences between layers as well as simultaneous or non concurrent sources of dispersed and concentrated heat. Based on assumptions from physics, appropriate differential equations were identified for the Cartesian coordinate arrangements. However, the proposed method can be adopted, without difficulty, to similar exercises involving cylindrical or spherical coordinate arrangements.
Cel: W artykule omówiono zagadnienie równania rozkładu stacjonarnego pola temperatury w wielowarstwowej płycie przy obecności zarówno rozłożonych, jak i skupionych wewnętrznych źródeł ciepła z uwzględnieniem nieidealnego kontaktu termicznego między warstwami. Wprowadzenie: Badanie pól temperatury w wielowarstwowych konstrukcjach jest wciąż aktualne, ponieważ konstrukcje tego typu wykorzystywane są na przykład w budownictwie. Wysokie temperatury stwarzają zagrożenie zniszczenia konstrukcji, wskutek pojawienia się znacznych naprężeń cieplnych w związku z procesem nagrzewania. Powszechnie wiadomo, że wyliczenie takich naprężeń możliwe jest tylko poprzez rozwiązanie odpowiednich równań przewodnictwa cieplnego. Zagadnieniom określania pól temperatury w wielowarstwowych strukturach poświęconych jest wiele prac. W większości tych prac rozwiązanie takich zadań odbywało się bez uwzględnienia źródeł ciepła, przy czym używano metodę równań sprzężonych. Przy liczbie warstw równej n>3 objętość przeprowadzanych obliczeń dramatycznie wzrasta. Ponadto wykorzystywana jest procedura różniczkowania współczynników równań quazi-różniczkowych, co prowadzi do problemu zwielokrotnienia funkcji uogólnionych. Taka procedura nie jest konieczna i łatwo ją zastąpić koncepcją quazi-pochodnych. Metodologia: Podczas formułowania zadania współczynnik przewodzenia ciepła i intensywność wewnętrznych źródeł ciepła zapisywane były w postaci splajnów za pomocą charakterystycznych funkcji przedziałów, a uwzględnienia intensywności skupionych źródeł dokonywano z wykorzystaniem funkcji Diraca (δ) poprzez prowadzenie po prawej stronie odpowiedniego równania quasi-różniczkowego. Do takiego równania dodawane są znane warunki naprężenia i warunki początkowe, do których, jednoznacznie można sprowadzić dowolne dwupunktowe warunki brzegowe. Następnie z wykorzystaniem koncepcji quazi-pochodnych przedstawione zadanie sprowadza się do ekwiwalentnego zagadnienia Cauchy'ego dla odpowiednich systemów równań różniczkowych z oddziaływaniem impulsowym. Wnioski: W danym opracowaniu otrzymano rozwiązanie równania rozkładu stacjonarnego pola temperatury w płycie wielowarstwowej z uwzględnieniem zarówno rozłożonych, jaki i skupionych źródeł ciepła w warunkach nieidealnego kontaktu cieplnego (termicznego) między warstwami. Podano przykład obliczenia pola temperatury w ośmiowarstwowej płycie poddawanej różnym kontaktom cieplnym między warstwami, jak również równoczesnym lub nierównoczesnym rozłożonym i skupionym źródłom ciepła. Bazując na założeniach fizyki, odpowiednie równanie różniczkowe zapisywane było w kartezjańskim układzie współrzędnych, jednak przedstawiona metoda bez większych trudności może znaleźć zastosowanie w podobnych zadaniach z użyciem cylindrycznych lub sferycznych układów współrzędnych.
Źródło:
Bezpieczeństwo i Technika Pożarnicza; 2015, 4; 51-59
1895-8443
Pojawia się w:
Bezpieczeństwo i Technika Pożarnicza
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Modelʹ teplovogo sostoâniâ požarnogo v zaŝitnoj odežde
A Model of a Firefighter’s Thermal Condition when Attired in Protective Clothing
Model stanu cieplnego ciała strażaka w ubraniu ochronnym
Autorzy:
Bolibrukh, B. V.
Chmiel, M.
Mazur, Yu.
Powiązania:
https://bibliotekanauki.pl/articles/372784.pdf
Data publikacji:
2016
Wydawca:
Centrum Naukowo-Badawcze Ochrony Przeciwpożarowej im. Józefa Tuliszkowskiego
Tematy:
safety at work
thermal condition of a firefighter’s body dressed in heat protective clothing
modelling
experimental research
ochrona pracy
stan cieplny ciała strażaka w ubraniu chroniącym przed ciepłem
modelowanie
badanie eksperymentalne
Opis:
Aim: The purpose of this study is to develop and verify a mathematical model, which identifies the thermal condition of a firefighter whilst wearing heat protective clothing at different temperature levels. The model is intended for predicting and analyzing the thermal condition of the body and determination of a firefighter’s maximum operating endurance. Introduction: The work of a firefighter is accompanied by considerable risk to health and life. Effects from heat and physical exertion often reach critical limits of human endurance. Similarly, materials used in protective clothing may become ineffective beyond certain parameters. Consequently, exposure beyond such parameters leads to overheating of the body and causes burns. In order to increase the firefighter’s operational safety, it is important to know endurance limits for specified operating conditions, within which a firefighter is expected to perform and not exceed such limits. The time constraint is dependent on a range of factors, such as: characteristics of heat protective clothing (amount, type of material used and thickness of layers), temperature, humidity, speed of airflow surrounding the clothing and work load. Methods: The simultaneous modelling of a firefighter’s body temperature and clothing intended to protect from the effects of heat, allows for an evaluation of many aspects relating to the work of a firefighter and factors which influence the thermal condition of his/her body. This kind of modelling facilitates the determination of a firefighter’s maximum performance duration in given circumstances and to develop a configuration of new clothing providing protection against the effect of heat. Simultaneously, it is possible to analyze comfort levels and parameter limits for human body temperatures, which on average range within 37,2-38°C. Additionally, modelling will enable a reduction in the number of expensive tests for textile content of protective clothing, performed for different environmental conditions and nature of work of a firefighter during operations. Results: Reported study results relating to temperature levels in spaces beneath layers of protective clothing for volunteers taking part in research, who performed physical exercises of varying intensity, were utilised to verify the proposed model. Body temperature test results, for volunteers attired in protective clothing and engaged in physical activity at room temperature of varying degrees, were very close to the results obtained from model calculations. Variations did not exceed 2°C. Conclusion: The study facilitated the development of a two dimension model revealing the heat exchange in protection clothing, taking into account thermal processes and thermoregulation mechanisms of the human body, at different physical exertion levels, including internal heat release, permeability of textiles, and heat dissipation through breathing and perspiration.
Wprowadzenie: Gaszenie pożarów wiąże się z dużym ryzykiem dla życia i zdrowia strażaków. Temperatura i obciążenie fizyczne, które oddziałują na strażaków osiągają często wartości krytyczne dla organizmu człowieka oraz materiałów, z których wykonane jest ubranie chroniące przed wpływem ciepła. Przekroczenie tych wartości doprowadza do przegrzania ciała lub poparzeń. Aby zwiększyć bezpieczeństwo pracy strażaków, należy znać granice czasowe, w jakich strażak może pracować w określonych warunkach podczas gaszenia pożaru i nie dopuszczać do ich przekroczenia. Maksymalny czas zależy od czynników takich jak: charakterystyka ubrania chroniącego przez oddziaływaniem ciepła (liczba, materiał i grubość warstw), temperatura, wilgotność i prędkość owiewu ubrania przez otaczające powietrze oraz poziom obciążenia. Cel: Celem artykułu jest opracowanie i weryfikacja modelu obliczeniowego stanu cieplnego ciała strażaka w ubraniu chroniącym przez oddziaływaniem ciepła w różnych warunkach termicznych. Model posłuży dla prognozowania i analizy stanu cieplnego oraz określenia maksymalnego/granicznego czasu pracy strażaka. Metody: Jednoczesne modelowanie stanu cieplnego ciała strażaka oraz ubrania chroniącego przed oddziaływaniem ciepła pozwoli na przeanalizowanie wielu warunków pracy strażaka, oraz czynników wpływających na stan cieplny jego organizmu. Tego rodzaju modelowanie pozwala określać maksymalną długość pracy strażaka w danych warunkach oraz opracować konfigurację nowego ubrania chroniącego przed oddziaływaniem ciepła. Jednocześnie można będzie analizować poziom komfortowych i granicznych temperatur ciała człowieka, które wynoszą średnio 37,2-38°С. Modelowanie pozwoli również ograniczyć liczbę drogich badań w warunkach rzeczywistych nad materiałami odzieży ochronnej, przeprowadzanych dla różnych warunków środowiskowych i charakteru pracy strażaka podczas gaszenia pożaru. Wyniki: Przedstawione wyniki badań eksperymentalnych stanu cieplnego w przestrzeni pod ubraniem ochotników uczestniczących w badaniach, wykonujących ćwiczenia fizyczne o zróżnicowanym natężeniu, zostały wykorzystane do zweryfikowania prezentowanego modelu. Wyniki uzyskane podczas eksperymentalnych pomiarów temperatury ciała ochotników ubranych w odzież ochronną i wykonujących prace w temperaturze pokojowej o różnym stopniu natężenia były bardzo zbliżone do wyników obliczeń modelowych. Różnice nie wynosiły więcej niż 2°С. Wnioski: Efektem prac jest opracowany dwumiarowy model wymiany ciepła w ubraniu ochronnym, uwzględniający procesy termiczne i mechanizmy termoregulacji przy różnych poziomach obciążenia fizycznego, w tym wewnętrzne wydzielanie ciepła, zmienną przepuszczalność tkanin, odprowadzanie ciepła przez wydzielanie potu i oddychanie.
Źródło:
Bezpieczeństwo i Technika Pożarnicza; 2016, 41, 1; 37-46
1895-8443
Pojawia się w:
Bezpieczeństwo i Technika Pożarnicza
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies