Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "seismic method" wg kryterium: Temat


Wyświetlanie 1-4 z 4
Tytuł:
Badanie przypowierzchniowych warstw podłoża metodą sejsmiczną
Testing of foundation layers, adjacent to the surface, by means of the seismic method
Autorzy:
Siata, R.
Powiązania:
https://bibliotekanauki.pl/articles/340545.pdf
Data publikacji:
2002
Wydawca:
Główny Instytut Górnictwa
Tematy:
ośrodek skalny
metoda sejsmiczna
warstwa powierzchniowa
pomiar sejsmiczny
rock medium
seismic method
surface layer
seismic measuring
Opis:
Określenie budowy i własności fizycznych ośrodka skalnego ma duże znaczenie dla: - budownictwa podziemnego i lądowego, - prognozy zagrożeń naturalnych, - rozpoznania budowy geologicznej, - modelowania analitycznego. Podstawową metodą wyznaczania płytkich granic litologicznych i strefy małych prędkości fal sejsmicznych jest metoda sejsmiczna, której wariantem jest metoda płytkiej refrakcji. Może ona służyć do wyznaczania granic litologicznych do głębokości 30-50 m w zależności od lokalnych warunków geologicznych. Określane tą metodą prędkości mogą być również wykorzystywane do klasyfikacji masywu skalnego z zastosowaniem skali opracowanych między innymi przez Bartona, Bieniawskiego, Bestyńskiego (dla fliszu karpackiego). Warstwy leżące najpłycej utworzone są najczęściej z osadów trzecio i czwartorzędowych oraz utworów zwietrzałych. Warstwę, którą charakteryzują najniższe wartości prędkości fal sejsmicznych, tzw. strefę małych prędkości (SMP) tworzą grunty nieskonsolidowane lub utwory zwietrzałe. Prędkości te nie przekraczają 1000 m/s, podczas gdy prędkości fal sejsmicznych w twardym podłożu są większe od 1500 m/s (2000 m/s). Dodatkowym czynnikiem wpływającym na prędkości fal sejsmicznych w ośrodku jest poziom zwierciadła wód gruntowych. SMP charakteryzuje się wzrostem prędkości fal wraz z głębokością lecz może również charakteryzować się jedną wartością prędkości. Drugi przypadek występuje, gdy na przykład w pobliżu znajdują się warstwy piasków. Prędkości fal sejsmicznych w warstwach zalegających nad twardym podłożem określono metodą : płytkiej refrakcji wzdłuż profili sejsmicznych w następujących rejonach: - Jaworzno, rejon zalewu Łęg, - OG KWK Halemba, przy szybie Grunwald. - Kopalnia Doświadczalna Barbara, przy szybie Barbara. Do interpretacji uzyskanego materiału pomiarowego wykorzystano analizę hodografów zbieżnych. Wyznaczono prędkości i miąższości poszczególnych warstw metodą średnich arytmetycznych. Tak wyznaczony model ośrodka posłużył jako model startowy do tomograficznego odwzorowania na podstawie czasów pierwszych wejść fali sejsmicznej. Wyniki przedstawiono w postaci dwuwymiarowych map prędkości (rys. 1a, 2a, 3a). W miejscach wykonywania pomiarów sejsmicznych stwierdzono dużą zmienność prędkości propagacji podłużnej fali sejsmicznej w utworach zaliczanych do nadkładu czwartorzędowego w zakresie od 300 do 1800 m/s. Najniższe wartości występowały w strefie przypowierzchniowej. Zmian prędkości nie można w prosty sposób korelować z wykształceniem geologicznym utworów. Jest to spowodowane faktem, że utwory czwartorzędu wykształcone są głównie w postaci piasków, żwirów, pyłów, glin oraz rumoszu, w przypadku których prędkości fal sprężystych związane są głównie ze stopniem zagęszczenia (gęstością) i zawodnieniem. Z tych względów płytkie granice sejsmiczne nie pokrywają się z granicami litologicznymi, a zakres zmienności prędkości fal dla podobnych utworów jest bardzo duży. Można stwierdzić, że dla piasków prędkości zmieniają, się od około 300 m/s (suche i zalegające bezpośrednio na powierzchni) do około 1500 m/s dla utworów zawodnionych. Utwory identyfikowane ze stropem karbonu zaznaczają się w postaci granicy refrakcyjnej o prędkości w przedziale 1800-2200 m/s.
The determination of the structure and physical properties of the rock medium has great significance for: - underground building and civil engineering, - natural hazard prediction, - identification of geological structure, - analytic modelling. The basic method of determination of shallow lithological limit and zone of small seismic wave velocity is the seismic method, a variant of which is the shallow refraction method. It can serve the determination of lithological limits up to the depth of 30-50 m, depending on local geological conditions. The velocities determined by means of this method can be also applied for rock mass classification with the use of scales, developed among others by Barton, Bieniawski, Bestyński (for the Carpathian flysch). The layers localized close to the surface are most frequently formed of Tertiary and Quarternary deposits and weathered formations. The layer, characterized by the lowest values of seismic wave velocities, the so-called low velocity zone (SMP) form non-consolidated grounds and weathered formations. These velocities do not exceed 1000 m/s, whereas the velocities of seismic waves in hard foundations are bigger than 1500 m/s (2000 m/s). An additional factor influencing the velocities of seismic waves in the medium is the underground water level. A low velocity zone is characterized by the increase of wave velocity along with the depth, but it can be also characterized by one velocity value. The second case takes place, when for example, sandstone layers occur in the vicinity. The velocities of seismic waves in layers occurring above the hard foundation were determined by the method of shallow, refraction on seismic profiles in the following regions: - Jaworzno, the Łęg water reservoir region, - Mining area of Halemba mine, at Grunwald shaft, - Experimental Mine "Barbara" at Barbara shaft. For the interpretation of the obtained measuring material the convergent hodograph analysis was used. The velocities and thickness of individual layers were determined by means of the arithmetic average method. The medium model, determined in such a way, served as start model for tomographic mapping on the basis of times of first seismic wave entries. The results were presented in the form of two-dimensional velocity maps. In sites of seismic measuring execution one has stated big variability of velocity propagation of longitudinal seismic wave in formations classified among Quarternary overburden within the range from 300 to 1800 m/s. The lowest values occurred in the zone, adjacent to the surface. Velocity changes cannot be in a simple way correlated with the structure of geological formations. This is caused by the fact that Quarternary formations occur mainly in the form of sands, gravels, dusts, clays, and rubble, in case of which the velocities of elastic waves are connected first of all with the consolidation (density) degree and water content. For these reasons the shallow seismic limits do not coincide with lithological limits, and the range of wave velocity variability for similar formations is very high. One can state that for sands the velocities change from about 300 m/s (dry and occurring directly on the surface) to about 1500 m/s for watered formations. Formations identified with the Carboniferous roof appear in the form of refraction limit with velocity within the interval 1800-2200 m/s.
Źródło:
Prace Naukowe GIG. Górnictwo i Środowisko / Główny Instytut Górnictwa; 2002, 4; 33-42
1643-7608
Pojawia się w:
Prace Naukowe GIG. Górnictwo i Środowisko / Główny Instytut Górnictwa
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Nowoczesny system INGEO do monitorowania zagrożenia sejsmicznego i tąpaniami w kopalniach węgla kamiennego i rud miedzi
The INGEO modern system for monitoring seismic and rock burst hazard in hard coal mines and copper ore mines
Autorzy:
Isakow, Z.
Juzwa, J.
Kubańska, A.
Siciński, K.
Powiązania:
https://bibliotekanauki.pl/articles/394945.pdf
Data publikacji:
2017
Wydawca:
Polska Akademia Nauk. Instytut Gospodarki Surowcami Mineralnymi i Energią PAN
Tematy:
system sejsmiczny
system sejsmoakustyczny
pasywna i aktywna metoda tomografii sejsmicznej
ocena zagrożenia tąpaniami
system
seismic-acoustic system
passive and active seismic tomography method
rock burst hazards assessment
Opis:
W ramach Programu Badań Stosowanych PBS został wykonany projekt „Innowacyjne metody i system do oceny zagrożenia tąpaniami na podstawie probabilistycznej analizy procesu pękania i geotomografii online”, w którym został opracowany, wykonany i przebadany prototyp systemu INGEO. Stanowi on kontynuację rozwoju systemów sejsmicznego ARAMIS M/E i sejsmoakustycznego ARES-5/E poprzez ich wzbogacenie o nowe, innowacyjne technologie i metody analiz. System został wyposażony w cyfrową transmisję na powierzchnię z wykorzystaniem światłowodów i lokalną w rejonie ściany z wykorzystaniem linii przewodowych. INGEO umożliwia ocenę zagrożenia tąpaniami metodami standardowymi: sejsmoakustyczną, sejsmologii, hazardu sejsmicznego, oraz opartymi na tomografii rejonu przed frontem ściany: pasywną z wykorzystaniem wstrząsów górniczych i aktywną z wykorzystaniem wzbudników lub organu urabiającego kombajnu. System wyposażono ponadto w otworowe czujniki zmian naprężenia i ultradźwiękowe czujniki deformacji wyrobisk w rejonie ściany z lokalną transmisją radiową do przesyłu danych do kanału cyfrowej transmisji przewodowej i światłowodowej. INGEO umożliwia współbieżną kontrolę deformacji w rejonie wyrobisk wokół ściany wydobywczej z precyzyjną kontrolą deformacji na powierzchni nad rejonem ściany w celu doskonalenia opracowanych stochastycznych modeli dla predykcji występowania zagrożeń spowodowanych wstrząsami górniczymi. Monitoring może obejmować szczególnie zagrożone rejony z wykorzystaniem geofonów i nowo opracowanych czujników lub obszar całej kopalni czy kilku połączonych kopalń z wykorzystaniem sejsmometrów. Ze względu na zastosowanie transmisji światłowodowej, precyzyjnie zsynchronizowanej zegarem GPS, strumieniowej transmisji danych oraz wielorejonowej detekcji zjawisk, INGEO stanowi zaawansowaną technicznie ofertę dla kopalń węgla kamiennego oraz rozległych kopalń rud miedzi.
Within the framework of the PBS Research Program, a project entitled „Innovative methods and a system for assessing rock burst hazards based on probabilistic crack process analysis and online geo-tomography” was accomplished, where the developed prototype of INGEO system was designed, performed and tested. The system is a continuation of the existing systems: seismic ARAMIS M/E and seismic-acoustic ARES-5/E, by their enrichment with new technologies and methods of analysis. The system is equipped with digital data transmission to surface using fiber optics, and cable within an area of a longwall. INGEO enables the assessment of rock burst hazards by standard methods: seismic-acoustic, seismological and of the seismic hazard, and also by geo-tomography in a front of the longwall: passive, which uses seismic shocks and active induced shocks by controlled exciters or a shearer of the cutter loader. The system is additionally equipped with borehole strain gauges and ultrasound detectors of deformation in the area of the longwall using a radio medium for local data transmission to the digital channels of wire and fiber transmission. INGEO also enables the concurrent control of deformation in the excavation around the longwall area with precise control of the deformation observed on the surface located over the area of this longwall to improve the developed stochastic models for the prediction of hazards caused by seismic events. The monitored area can contain both particularly endangered small zones with the use of geophones and newly developed sensors or a territory of a whole mine or several merged mines using seismometers as well. Due to the use of fiber optics transmission, a precisely synchronized GPS clock, the streaming of data and multi-zone detection of seismic events, INGEO is a technologically advanced offer for hard coal mines and large copper ore mines.
Źródło:
Zeszyty Naukowe Instytutu Gospodarki Surowcami Mineralnymi i Energią PAN; 2017, 101; 173-184
2080-0819
Pojawia się w:
Zeszyty Naukowe Instytutu Gospodarki Surowcami Mineralnymi i Energią PAN
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wykorzystanie powierzchniowych sondowań sejsmicznych do oceny stanu technicznego wałów przeciwpowodziowych
The use of surface seismic methods for examination of technical conditions of the levees
Autorzy:
Bajda, M.
Sarosiak, N.
Markowska-Lech, K.
Powiązania:
https://bibliotekanauki.pl/articles/40928.pdf
Data publikacji:
2012
Wydawca:
Szkoła Główna Gospodarstwa Wiejskiego w Warszawie. Wydawnictwo Szkoły Głównej Gospodarstwa Wiejskiego w Warszawie
Tematy:
waly przeciwpowodziowe
stan techniczny
badania geofizyczne
badania sejsmiczne
metody badan
metoda wielokanalowej analizy fal sejsmicznych
anti-flooding dam
technical state
geophysical research
seismic research
research method
seismic wave multichannel method
Źródło:
Acta Scientiarum Polonorum. Architectura; 2012, 11, 3
1644-0633
Pojawia się w:
Acta Scientiarum Polonorum. Architectura
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Badania klimatu akustycznego w rejonie prowadzonych prac sejsmicznych
Analysis of acoustic climate in the area of seismic measurements
Autorzy:
Macuda, J.
Zawisza, L.
Powiązania:
https://bibliotekanauki.pl/articles/300151.pdf
Data publikacji:
2008
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
prace sejsmiczne
hałas
metoda wibratorowa
metoda detonacyjna
seismic measurements
noise
vibration method
detonation method
Opis:
W artykule przedstawiono wyniki badań klimatu akustycznego w rejonie prowadzonych prac sejsmicznych zarówno, metodą wibratorową, jak i detonacyjną. Zmierzone wartości hałasu emitowanego w trakcie prowadzonych prac były podstawą do oceny wielkości ich oddziaływania na środowisko. Zamieszczone w artykule wyniki badań powinny być podstawą zarówno do projektowania przebiegu profili sejsmicznych w terenie, jak i wykonywania ocen ich oddziaływania na środowisko.
The results of measurements of acoustic climate in the area of seismic measurements carried out with the vibration and detonation methods are presented in the paper. The measured values of noise emitted during measurements were a basis for assessing their environmental impact. The presented results should create bases for planning the course of seismic profiles in the area as well as evaluating their environmental impact.
Źródło:
Wiertnictwo, Nafta, Gaz; 2008, 25, 2; 497-502
1507-0042
Pojawia się w:
Wiertnictwo, Nafta, Gaz
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies