Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "nonnegative matrix" wg kryterium: Temat


Wyświetlanie 1-1 z 1
Tytuł:
Rekonstrukcja niekompletnych obrazów za pomocą metod aproksymacji modelami niskiego rzędu
Image completion with low-rank model approximation methods
Autorzy:
Sadowski, T.
Zdunek, R.
Powiązania:
https://bibliotekanauki.pl/articles/408844.pdf
Data publikacji:
2017
Wydawca:
Politechnika Lubelska. Wydawnictwo Politechniki Lubelskiej
Tematy:
rekonstrukcja obrazów
aproksymacja niskiego rzędu
nieujemna faktoryzacja macierzy
dekompozycja tensorowa
uzupełnianie elementów macierzy
image completion
low-rank approximation
nonnegative matrix factorization
tensor decomposition
matrix completion
Opis:
W pracy badano zadanie rekonstrukcji brakujących pikseli w obrazach poddanych losowym zaburzeniom impulsowym w kanale transmisyjnym. Takie zadanie może być sformułowane w kontekście interpolacji obrazu na nieregularnej siatce lub aproksymacji niekompletnego obrazu za pomocą modeli dekompozycji obrazu na faktory niskiego rzędu. Porównano skuteczność czterech algorytmów opartych na dekompozycjach macierzy lub tensorów: SVT, SmNMF-MC, FCSA-TC i SPC-QV. Badania przeprowadzono na obrazach niekompletnych, otrzymanych z obrazów oryginalnych przez usunięcie losowo wybranych pikseli lub linii tworzących regularną siatkę. Najwyższą efektywność rekonstrukcji obrazu uzyskano gdy na estymowane faktory niskiego rzędu narzucano ograniczenia nieujemności i gładkości w postaci wagowej filtracji uśredniającej.
The paper is concerned with the task of reconstructing missing pixels in images perturbed with impulse noise in a transmission channel. Such a task can be formulated in the context of image interpolation on an irregular grid or by approximating an incomplete image by low-rank factor decomposition models. We compared four algorithms that are based on the low-rank decomposition model: SVT, SmNMF-MC , FCSA-TC and SPC-QV. The numerical experiments are carried out for various cases of incomplete images, obtained by removing random pixels or regular grid lines from test images. The best performance is obtained if nonnegativity and smoothing constraints are imposed onto the estimated low-rank factors.
Źródło:
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska; 2017, 7, 4; 44-48
2083-0157
2391-6761
Pojawia się w:
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-1 z 1

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies