Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "mel-cepstral coefficients" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Porównanie wyników analizy cepstralnej z innymi parametrami oceny głosu u pacjentów z dysfoniami zawodowymi
Comparison of cepstral coefficients to other voice evaluation parameters in patients with occupational dysphonia
Autorzy:
Niebudek-Bogusz, Ewa
Strumiłło, Paweł
Wiktorowicz, Justyna
Śliwińska-Kowalska, Mariola
Powiązania:
https://bibliotekanauki.pl/articles/2166319.pdf
Data publikacji:
2014-11-05
Wydawca:
Instytut Medycyny Pracy im. prof. dra Jerzego Nofera w Łodzi
Tematy:
kompleksowa ocena głosu
współczynniki cepstralne MFCC
zawodowe zaburzenia głosu
complex voice assessment
mel-cepstral coefficients
MFCCs
occupational voice disorders
Opis:
Wprowadzenie: W ostatnim czasie wśród obiektywnych metod oceny głosu uznaniem cieszy się analiza akustyczna oparta na wyznaczaniu współczynników cepstralnych MFCC (mel-frequency cepstral coefficients). Celem badania była ocena ich zastosowania w diagnozowaniu dysfonii zawodowych w porównaniu z innymi subiektywnymi i obiektywnymi parametrami diagnostycznymi zaburzeń głosu. Materiał i metody: W badaniu wzięły udział 2 grupy kobiet: grupa badana - 55 nauczycielek (średni wiek: 45 lat) z dysfoniami o podłożu zawodowym, potwierdzonymi badaniem laryngowideostroboskopowym, oraz grupa porównawcza - 40 kobiet z głosem prawidłowym (średni wiek: 43 lata). Próbki dźwiękowe (samogłoska ‘a' oraz 4 znormalizowane fonetycznie zdania) poddano analizie MFCC. Wyniki porównano z parametrami akustycznymi (z grupy jittera, z grupy shimmera, parametrem oceny szumów NHR i współczynnikiem chrypki Yanagihary), parametrem aerodynamicznym (maksymalnym czasem fonacji) i parametrami subiektywnymi (skalą percepcyjną GRBAS i wskaźnikiem niepełnosprawności głosowej VHI). Wyniki: Analiza cepstralna wykazała znaczące różnice między grupą badaną a porównawczą, istotne dla współczynników MFCC2, MFCC3, MFCC5, MFCC6, MFCC8, MFCC10, szczególnie dla MFCC6 (p < 0,001) oraz dla MFCC8 (p < 0,009), co może sugerować ich przydatność kliniczną. Z kolei w grupie badanej MFCC4, MFCC8 i MFCC10 istotnie korelowały z większością zastosowanych parametrów obiektywnych oceny głosu. Ponadto współczynnik MFCC8, który u badanych nauczycielek korelował istotnie z wszystkimi ww. 8 parametrami obiektywnymi, wykazał też istotną zależność z cechą dystynktywną A (asthenity) subiektywnej skali GRBAS, cechującej głos słaby, zmęczony. Wnioski: Analiza cepstralna, oparta na wyznaczaniu współczynników MFCC, jest dobrze rokującym narzędziem do obiektywnej diagnostyki dysfonii zawodowych, które bardziej niż inne metody analizy akustycznej odzwierciedla cechy percepcyjne głosu. Med. Pr. 2013;64(6):805–816
Background: Special consideration has recently been given to cepstral analysis with mel-frequency cepstral coefficients (MFCCs). The aim of this study was to assess the applicability of MFCCs in acoustic analysis for diagnosing occupational dysphonia in comparison to subjective and objective parameters of voice evaluation. Materials and Methods: The study comprised 2 groups, one of 55 female teachers (mean age: 45 years) with occupational dysphonia confirmed by videostroboscopy and 40 female controls with normal voice (mean age: 43 years). The acoustic samples involving sustained vowels "a" and four standardized sentences were analyzed by computed analysis of MFCCs. The results were compared to acoustic parameters of jitter and shimmer groups, noise to harmonic ratio, Yanagihara index evaluating the grade of hoarseness, the aerodynamic parameter: maximum phonation time and also subjective parameters: GRBAS perceptual scale and Voice Handicap Index (VHI). Results: The compared results revealed differences between the study and control groups, significant for MFCC2, MFCC3, MFCC5, MFCC6, MFCC8, MFCC10, particularly for MFCC6 (p < 0.001) and MFCC8 (p < 0.009), which may suggest their clinical applicability. In the study group, MFCC4, MFCC8 and MFCC10 correlated significantly with the major objective parameters of voice assessment. Moreover, MFCC8 coefficient, which in the female teachers correlated with all eight objective parameters, also showed the significant relation with perceptual voice feature A (asthenity) of subjective scale GRBAS, characteristic of weak tired voice. Conclusions: The cepstral analysis with mel frequency cepstral coefficients is a promising tool for evaluating occupational voice disorders, capable of reflecting the perceptual voice features better than other methods of acoustic analysis. Med Pr 2013;64(6):805–816
Źródło:
Medycyna Pracy; 2013, 64, 6; 805-816
0465-5893
2353-1339
Pojawia się w:
Medycyna Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wykorzystanie metody niejawnych modeli Markowa w automatycznej detekcji wybranych wad wymowy
Application Hidden Markov Models to Automatic Detection of Speech Disorder
Autorzy:
Wielgat, R.
Zieliński, T.
Świętojański, P.
Żołądź, P.
Woźniak, T.
Grabias, S.
Król, D.
Powiązania:
https://bibliotekanauki.pl/articles/152366.pdf
Data publikacji:
2007
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
współczynniki HFCC
współczynniki MFCC
niejawne modele Markowa
terapia logopedyczna
human factor cepstral coefficients
Mel-frequency cepstral coefficients
hidden markov models
logopedic therapy
Opis:
W artykule przedstawiono wyniki badań dotyczących automatycznej detekcji wad wymowy u dzieci. Jako materiał badawczy zostały wykorzystane nagrania pochodzące od dzieci z wadami wymowy. Zadanie polegało na rozpoznaniu nieprawidłowo realizowanego fonemu w wybranych słowach testowych. Detekcja była dokonywana za pomocą metod rozpoznawania mowy, w których jako cec sygnału mowy użyto dwóch najbardziej obiecujących rodzajów cech: współczynnika MFCC praz współczynników HFCC. Jako klasyfikatora użyto metody niejawnych modeli Markowa (HMM), gdzie modelowanymi jednostkami fonetycznimi były zarówno fonemy jak i całe słowa. W badanych metodach dobrano ich parametry w celu zmaksymalizowania skuteczności rozpoznawania. W artykule zaprezentowano również analizę porównawczą wyników rozpoznawania otrzymanych z wykorzystaniem metody HMM oraz testowanej w poprzednich pracach metody nieliniowej transformacji czasowej (DTW).
The results of research on automatic detection of the pathological phoneme pronunciation are presented in the paper. Speech samples came from speech impaired children and persons who imitated pathological phoneme pronunciation. The recognition task was to find wrongly realized phoneme in the selected test utterances. At the reature extraction stage the most effective features` types have been used: standard Mel-Frequency Cepstral Coefficients (MFCC) and recently proposed Human Factor Cepstral Coefficients (HFCC). As a classificator hidden Markov models, with modeled speech unit being a phoneme as well as a whole word, have been used. The parameters of the HMMs were adjusted in order to achieve the best recognition accuracy. Comparision of the HMM and DTW methods is also presented in the paper.
Źródło:
Pomiary Automatyka Kontrola; 2007, R. 53, nr 9 bis, 9 bis; 417-420
0032-4140
Pojawia się w:
Pomiary Automatyka Kontrola
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies