Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "klasyfikacja obrazu" wg kryterium: Temat


Wyświetlanie 1-13 z 13
Tytuł:
Porównanie wyników klasyfikacji obrazów satelitarnych HYPERION i ALI
Comparison of HYPERION and ALI satellite imagery classification
Autorzy:
Hejmanowska, B.
Powiązania:
https://bibliotekanauki.pl/articles/130788.pdf
Data publikacji:
2007
Wydawca:
Stowarzyszenie Geodetów Polskich
Tematy:
klasyfikacja obrazu
HYPERION
ALI
image classification
Opis:
Celem przeprowadzonych badan było porównanie wyników klasyfikacji obrazów satelitarnych - hiperspektralnych: HYPERION i wielospektralnych: ALI, zarejestrowanych w zakresach spektralnych podobnych do obrazu: LANDSAT. Testy prowadzono na obszarze leżącym na wschód od aglomeracji krakowskiej, dla którego dysponowano obrazami z platformy EO – 1 zarejestrowanymi w 2006 roku, dzięki projektowi KBN (nr 3T 09D 09429). W badaniach wykorzystano oprogramowanie specjalistyczne (ENVI 4.1) dedykowane opracowaniom danych teletedetekcyjnych. Obrazy HYPERION zostały wstępnie przetworzone w celu usunięcia zakłóceń spowodowanych wpływem atmosfery i tzw. efektem „smiling”. Klasyfikacje przeprowadzono tylko metodami tradycyjnie wykorzystywanymi w przetwarzaniu obrazów wielospektralnych, czyli za pomocą klasyfikacji nienadzorowanej i nadzorowanej. Założenie metodyczne porównania wyników klasyfikacji polegało na wykorzystaniu dla obu obrazów tych samych uczących pól treningowych i podobnych pól kontrolnych wykorzystywanych do oceny dokładności. Ponadto wszystkie parametry zastosowanych algorytmów były równie_ identyczne dla obu obrazów. Pola treningowe i testowe wybierano manualnie z wykorzystaniem kompozycji barwnych. W trakcie prowadzenia testów zaistniała konieczność zredukowania liczby analizowanych kanałów obrazu HYPERION, ponieważ w przeciwnym razie nie uzyskiwano zadawalających wyników klasyfikacji. W takim przypadku dokładność klasyfikacji obrazu HYPERION była wyższa ni_ dokładność klasyfikacji obrazu ALI. Natomiast wynik klasyfikacji wszystkich kanałów obrazu HYPERION albo w ogóle był nie do zaakceptowania, albo wynik klasyfikacji był znacznie gorszy ni_ w przypadku ALI i ograniczonej liczby kanałów HYPERION.
The main aim of the research was to compare the results of satellite image classification: HYPERION and ALI, recorded in a spectral range similar to LANDSAT. Analyses were performed using the test area to the east of Krakow. Satellite iamges were obtained in 2006 thanks to scientific project KBN (no. 3T 09D 09429). The image processed with ENVI. HYPERION was initially preprocessed to remove so-called atmospheric effects, and so-called “similing” effect. The classification was performed using conventional spectral methods: unsupervised and supervised classification. The background of the comparison was applied in the same training and control area, and the same parameters of classification. Training and control areas ware selected using colour compositions. In the research, a need to reduce the amount of HYPERION channels emerged, otherwise the classification results would not be possible to interpret. In such case, the accuracy of HYPERION channel reduction classification was higher than that of ALI. The result of classification of all HYPERION image channels, however, was either completely unacceptable, or the classification result was much worse than in the case of ALI and limited number of HYPERION channels.
Źródło:
Archiwum Fotogrametrii, Kartografii i Teledetekcji; 2007, 17a; 291-300
2083-2214
2391-9477
Pojawia się w:
Archiwum Fotogrametrii, Kartografii i Teledetekcji
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wpływ własności ortofotomapy cyfrowej na wyniki klasyfikacji obiektowej pokrycia terenu
The effect of ortophotomap properties on the results of object-based classification of land cover
Autorzy:
Adamczyk, J.
Powiązania:
https://bibliotekanauki.pl/articles/131020.pdf
Data publikacji:
2013
Wydawca:
Stowarzyszenie Geodetów Polskich
Tematy:
ortofotomapa
true ortho
GEOBIA
analiza obiektowa
klasyfikacja obrazu
ortophotomap
true-ortho
object analysis
image classification
Opis:
Wysokorozdzielcza ortofotomapa lotnicza coraz częściej stosowana jest do wykonywania inwentaryzacji pokrycia terenu. W artykule postawiono tezę, że zadanie to może zostać zrealizowane za pomocą analizy obiektowej zobrazowań teledetekcyjnych (GEOBIA), jednak wynik zależy od cech jakościowych ortofotomapy, zastosowanej procedury przetworzeń oraz doświadczenia operatora. Za najważniejszy uznano pierwszy z tych czynników i odniesiono się do niego w świetle istniejących polskich wytycznych technicznych. Określono pożądane cechy ortofotomapy, które warunkują jakość wykonanej klasyfikacji obiektowej. W celu omówienia podzielono je na następujące grupy: rozdzielczość przestrzenna, liczba i rodzaj kanałów uczestniczących w procedurach klasyfikacyjnych, dokładność geometryczna i rodzaj ortorektyfikacji, cechy fotometryczne, lokalnie występujące błędy. Ich wpływ na procedurę klasyfikacyjną jest dwojaki: mogą one uniemożliwiać przeprowadzenie klasyfikacji lub przysporzyć dodatkowej pracy przy poprawianiu jej wyników. Uwzględnienie sformułowanych zaleceń znacznie ułatwi przeprowadzenie klasyfikacji tak wysokorozdzielczego zobrazowania.
High resolution ortophotomap is frequently used for land cover inventory. The paper presents conditions under which the task of automated image classification can be accomplished using GeoObject Image Analysis (GEOBIA): the ortophotomap quality, applied processing procedure, and operators experience. The first of them was recognized as most important and compared to the existing polish technical guidelines regarding the quality of the ortophotomap. The desired features of the remote sensing material were presented according to the following fields: spatial resolution of imagery, number and type of image bands used for classification procedure, geometrical accuracy, the type of orthorectification procedure, photometric properties, local errors. The recommendations are addressed for facilitating the object-based classification of high resolution orthophotomap. They are useful for planning the organizational issues of the aerial flight to acquire images used for land cover inventory. The presented guidelines are also useful for assessing the cost of the possible correction of the obtained land cover classification, if the recommendations cannot be met.
Źródło:
Archiwum Fotogrametrii, Kartografii i Teledetekcji; 2013, 25; 9-18
2083-2214
2391-9477
Pojawia się w:
Archiwum Fotogrametrii, Kartografii i Teledetekcji
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Klasyfikacja pokrycia terenu z wykorzystaniem obrazów Sentinel-2A przetworzonych za pomocą metody głównych składowych (PCA)
Land cover classification using Sentinel-2A images processed by the principal components method (PCA)
Autorzy:
Kałużna, Urszula
Będkowski, Krzysztof
Powiązania:
https://bibliotekanauki.pl/articles/2058371.pdf
Data publikacji:
2020
Wydawca:
Polskie Towarzystwo Geograficzne
Tematy:
teledetekcja
pokrycie terenu
EGiB
Sentinel-2A
PCA
nadzorowana klasyfikacja obrazu
remote sensing
land cover
Land and Buildings Register
supervised image classification
Opis:
Celem badań jest ocena możliwości realizacji klasyfikacji nadzorowanej z wykorzystaniem obrazów (komponentów) uzyskiwanych w wyniku przetworzenia oryginalnych obrazów Sentinel-2A za pomocą metody głównych składowych (PCA). Klasyfikację wykonano w ośmiu wariantach, z wykorzystaniem algorytmów najmniejszej odległości (MD, Minimum Distance) oraz największego prawdopodobieństwa (ML, Maximum Likelihood), przy czym zastosowano oryginalne kanały 2, 3, 4, 8 Sentinel-2A oraz różną liczbę komponentów. Wyniki klasyfikacji oceniono poprzez porównanie z danymi o pokryciu terenu według Ewidencji Gruntów i Budynków (EGiB). Przeprowadzenie klasyfikacji na ograniczonej do dwóch liczbie komponentów uzyskanych w procedurze PCA tylko nieznacznie zmieniło wyniki w porównaniu do klasyfikacji na oryginalnych, nieprzetworzonych kanałach Sentinel-2A. Najbardziej zbliżone do danych EGiB rezultaty uzyskano stosując klasyfikację ML kanałów oryginalnych, nieprzetworzonych lub używając wszystkich komponentów PCA. Podjęta próba porównania pokrycia terenu ustalonego za pomocą klasyfikacji obrazów satelitarnych z klasami pokrycia, które zostały wyodrębnione z mapy EGiB wykazała, że przetworzenie mapy z postaci wektorowej na rastrową wpływa istotnie na uzyskiwane wyniki.
The aim of the research is to assess the feasibility of supervised classification using images (components) obtained through processing the original Sentinel-2A images by means of the principal component method (PCA). The classification was performed in eight variants, using the algorithms of the minimum distance (MD) and the maximum likelihood (ML), with the original channels 2, 3, 4, 8 of Sentinel-2A and a various number of components. The results of the classification were assessed by comparing them to the land coverage data of Land and Buildings Register (Ewidencja Gruntów i Budynków – EGiB). Performing the classification on a number of PCA components limited to two only slightly altered the results compared to the classification on the original, raw Sentinel-2A channels. The results most similar to the EGiB data were obtained using the ML classification of the original channels, i.e. raw channels or using all PCA components. The attempt to compare the land coverage established by the classification of satellite images to the coverage classes that were extracted from the EGiB map revealed that processing the map from vector to raster form significantly influences the obtained results.
Źródło:
Teledetekcja Środowiska; 2020, 61; 19-37
1644-6380
Pojawia się w:
Teledetekcja Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zastosowanie metody wektorów nośnych oraz komputerowej analizy obrazu w klasyfikacji korzeni marchwi
Application of support vector machines and digital image analysis in carrot roots classification
Autorzy:
Janaszek, M.
Trajer, J.
Powiązania:
https://bibliotekanauki.pl/articles/290488.pdf
Data publikacji:
2010
Wydawca:
Polskie Towarzystwo Inżynierii Rolniczej
Tematy:
analiza obrazu
klasyfikacja
marchew
SVM
digital image analysis
classification
carrot
Opis:
W pracy poruszono zagadnienie podejmowania decyzji o przydatności przetwórczej marchwi na podstawie uproszczonej informacji o barwie jej korzeni. Sprawdzono w jakim stopniu barwa pozwoli na odwzorowanie skupień korzeni o podobnych cechach chemicznych, decydujących o dalszym przeznaczeniu surowca. Do klasyfikacji korzeni wykorzystano metodę wektorów nośnych (SVM). Barwę marchwi odczytano z cyfrowych obrazów jej korzeni. Trafność klasyfikacji w zbiorze testowym wskazuje, że barwę można wykorzystać do opracowania wielokryterialnej klasyfikacji marchwi pod względem jej przydatności przetwórczej.
The article presents the study concerning the question of deciding on the processing suitability of carrot on the basis of simplified information about the color of roots. A possibility of mapping clusters of carrot roots having a similar chemical composition, which determine the further allocation of raw material, was examined. In classification of the roots support vector machine (SVM) was used. Carrot color was read from a digital image of its roots. Classification accuracy in the test set indicates that the color can be used to develop a multi-classification of carrots in terms of its processing suitability.
Źródło:
Inżynieria Rolnicza; 2010, R. 14, nr 7, 7; 75-80
1429-7264
Pojawia się w:
Inżynieria Rolnicza
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Dyskryminacja odmian ziarna pszenicy na podstawie cech geometrycznych
Discrimination of wheat seed varieties on the basis of geometrical characteristics
Autorzy:
Zapotoczny, P.
Powiązania:
https://bibliotekanauki.pl/articles/291520.pdf
Data publikacji:
2009
Wydawca:
Polskie Towarzystwo Inżynierii Rolniczej
Tematy:
ziarno
analiza obrazu
klasyfikacja
geometria
seed
image analysis
classification
geometry
Opis:
Celem pracy było poszukiwanie takich wyróżników geometrii 16 odmian ziarna pszenicy, które pozwolą na ich dyskryminacje. Do identyfikacji właściwości geometrycznych wykorzystano stanowisko do komputerowej analizy obrazu, oparte na pozyskiwania obrazu ziarniaków za pomocą aparatu fotograficznego. Każdy z ziarniaków został opisany przez 66 zmiennych geometrycznych. Analiza statystyczna wyników przebiegała dwuetapowo. W pierwszym etapie przeprowadzono redukcję zmiennych do najlepiej dyskryminujących, natomiast w drugim etapie przeprowadzono analizę dyskryminacyjną. Błąd klasyfikacji odmian jarych wyniósł 10,55%, natomiast odmian ozimych 4,58%.
The purpose of the work was to try to find these geometry characteristics for 16 wheat seed varieties, which will allow their discriminations. Workstation for computer image analysis, based on acquiring seed image using a camera, was used for identifying geometrical properties. Each seed was described by 66 geometrical variables. Statistical analysis of results proceeded in two stages. The first stage involved reduction of variables to those discriminating best, whereas discriminant analysis was made in the second stage. Classification error for spring varieties was 10.55%, and 4.58% for winter varieties.
Źródło:
Inżynieria Rolnicza; 2009, R. 13, nr 5, 5; 319-328
1429-7264
Pojawia się w:
Inżynieria Rolnicza
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wstępna ocena możliwości wykorzystania obrazów satelitarnych aster w monitorowaniu lodowców Svalbardu
Preliminary assessment of aster images applicability in monitoring the Svalbard glaciers
Autorzy:
Błaszczyk, M.
Drzewiecki, W.
Powiązania:
https://bibliotekanauki.pl/articles/129719.pdf
Data publikacji:
2006
Wydawca:
Stowarzyszenie Geodetów Polskich
Tematy:
ASTER
lodowiec
klasyfikacja
eCognition
segmentacja obrazu
tekstura
glacier
classification
segmentation
texture
Opis:
Celem prezentowanej pracy była ocena możliwości wykorzystania obrazów satelitarnych ASTER do określenia stopnia uszczelinienia powierzchni lodowców Svalbardu. Pierwszy etap badań polegał na określeniu granic lodowców. Przetestowano metody stosowane w tym celu w ramach projektu GLIMS (Global Land Ice Measurement from Space) oraz zaproponowano własne podejście oparte o wykorzystanie obrazu nasycenia uzyskanego na drodze transformacji IHS kompozycji barwnej z kanałów 345. Dla oddzielenia lodowców od obszarów kry lodowej zaproponowano wykorzystanie wybranych miar teksturalnych. Próby wyodrębnienia w granicach wydzielonych wcześniej lodowców obszarów uszczelinionych na drodze klasyfikacji nadzorowanej nie dały zadowalających rezultatów. Ostatnia część przeprowadzonych badań miała na celu przygotowanie obrazu satelitarnego do klasyfikacji obiektowej w programie eCognition poprzez opracowanie uniwersalnych parametrów segmentacji. Uzyskanie satysfakcjonujących rezultatów segmentacji w oparciu o kanały spektralne obrazu ASTER wymagało stosowania dla poszczególnych lodowców różnych parametrów skali, kształtu i zwartości, co znacząco utrudniałoby automatyzację procesu klasyfikacji. Poprawę rezultatów osiągnięto przeprowadzając wstępną segmentację w oparciu o 1 kanał obrazu ASTER, a dokładniejszą w oparciu o obraz tekstury uzyskany w programie MaZda. Otrzymane rezultaty segmentacji pozwalają przypuszczać, iż możliwe będzie przeprowadzenie klasyfikacji obiektowej w programie eCognition, której rezultatem będzie wydzielenie jako osobnej klasy obszarów uszczelinionych.
ASTER images applicability to surface crevassing assessment of tidewater glacier in southern Spitsbergen, Svalbard was investigated. In the first phase of research, the glaciers spatial extent determination methods were investigated - spectral bands rationing and Normalized Difference Snow Index (NDSI). A new method based on saturation image obtained by intensity-hue-saturation transformation of 345 colour composite was tested as well. Image texture parameters were applied to separate ice floats from glaciers. The supervised classification of original spectral bands for crevassed areas identification failed. Better results were achieved using chosen texture images, but still too many other glacier areas (e.g. dark moraines or streams on glacier surface) were classified as crevasses. In the last stage of research, object-oriented image analysis software (eCognition) was used. The parameters for ASTER image segmentation, resulting in determination of crevassed glacier areas as separate image segments, were searched. To achieve such a goal, image segmentation performed using ASTER spectral bands required different scale, shape and compactness factors for individual glaciers. This is because glacier dynamics and morphology differ, causing differences in shapes and extent of crevassed areas. Satisfactory results were achieved after the application of a two-level segmentation procedure: ASTER spectral band 1 segmentation using large scale parameter and than MaZda software computed texture image segmentation with a small-scale factor. The research confirmed the applicability of satellite ASTER images for monitoring the Svalbard glaciers. The spatial extent of the glaciers was determined by simple thresholding of transformed spectral bands and texture images. Furthermore, obtained segmentation results should enable successful application of object oriented image classification in eCognition to mapping of crevassed glacier areas. Such a classification is planned as the next stage of the research.
Źródło:
Archiwum Fotogrametrii, Kartografii i Teledetekcji; 2006, 16; 29-39
2083-2214
2391-9477
Pojawia się w:
Archiwum Fotogrametrii, Kartografii i Teledetekcji
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Klasyfikacja ziarniaków kukurydzy w oparciu o neuronową identyfikację kształtu
The classification of maizes kernels with supporting neuronal identification of shape
Autorzy:
Boniecki, P.
Nowakowski, K.
Powiązania:
https://bibliotekanauki.pl/articles/336706.pdf
Data publikacji:
2008
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Maszyn Rolniczych
Tematy:
ziarniak
kukurydza
klasyfikacja
neuronowa analiza obrazu
classification
maize
corn kernel
neuronal image analysis
Opis:
Celem pracy było wytworzenie systemu informatycznego wspomagającego proces klasyfikacji ziarniaków kukurydzy w oparciu o neuronową analizę obrazu. W pracy wykorzystano metodę identyfikacji różnic kształtów analizowanych obiektów w oparciu o tzw. superformułę, zaproponowaną przez Johana Gielisa, pozwalającą na reprezentację dowolnego kształtu za pomocą sześciu niezależnych parametrów.
The aim of work was producing the computer system helping the process of classification of corn kernels using neuronal image analysis. In the project was used method of identification of shapes differences using superformula proposed by John Gielis, permitting on representation of any shape with six independent parameters.
Źródło:
Journal of Research and Applications in Agricultural Engineering; 2008, 53, 3; 14-17
1642-686X
2719-423X
Pojawia się w:
Journal of Research and Applications in Agricultural Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zastosowanie analizy wielkości i kształtu w klasyfikacji użytków zielonych na zdjęciach Landsat ETM+
The application of the size and shape analysis in meadow classification on Landsat ETM+ images
Autorzy:
Kosiński, K.
Hoffmann-Niedek, A.
Powiązania:
https://bibliotekanauki.pl/articles/131094.pdf
Data publikacji:
2006
Wydawca:
Stowarzyszenie Geodetów Polskich
Tematy:
segmentacja obrazu
kształt
wielkość
klasyfikacja
użytkowanie łąk
image segmentation
shape
size
classification
grassland utilisation
Opis:
W naturalnym procesie widzenia z obrazu wydzielane są względnie jednorodne segmenty (Laliberte et al., 2004). Analizowane są takie cechy segmentów, jak kolor, tekstura, częstotliwość przestrzenna, położenie, wielkość, kształt, orientacja, ruch, efekt stereo (Zipser, Lamme, Shiller, 1996; Bach M., Meigen T., 1999; Jacob P., 2003). Znaczenie koloru w wizualnej interpretacji użytków zielonych na zdjęciach Landsat ETM+ można ocenić na podstawie analizy porównawczej składowych barwnych segmentów obrazu. Analiza barwna kompleksów krajobrazowo-roślinnych wydzielonych na mapie satelitarnej doliny Luciąży pozwala wyróżnić cztery kategorie użytków zielonych (Kosiński, 2005). Celem pracy jest określenie znaczenia wielkości i kształtu kompleksów w interpretacji użytków zielonych. Praca jest kontynuacją badań w dolinie Luciąży na Równinie Piotrkowskiej. Kompleksy krajobrazowo-roślinne (jednostki geobotaniczne w randze przestrzennej uroczyska) wydzielano na kompozycji dwóch zdjęć Landsat ETM+. Do delimitacji kompleksów zastosowano interaktywne grupowanie pikseli metodą Region Growing. Analiza wielkości i kształtu wydzielonych w ten sposób segmentów obrazu pozwala odróżnić łąki użytkowane na siedliskach świeżych od pozostałych użytków zielonych, roślinności darniowej i muraw. Wg dobranych empirycznie kryteriów jedenaście spośród trzynastu badanych kompleksów tego typu było prawidłowo sklasyfikowanych. Spośród pozostałych 39 kompleksów użytków zielonych 37 zostało zakwalifikowanych prawidłowo. Połączenie wyników klasyfikacji wg składowych barwnych z klasyfikacją wg wielkości i kształtu pozwala dobrać parametry klasyfikacji pozwalającej wyeliminować błędy operatora w klasyfikacji łąk użytkowanych na siedliskach świeżych. Wyniki wymagają weryfikacji na szerszym materiale, w szczególności rozszerzenia badań na inne mezoregiony.
Image processing during the human vision process tends to generalize images into homogenous areas. When interpreting grasslands on aerial photos and satellite images, image segments are understood as quasi-homogeneous vegetation units: what looks similar in a remotely sensed image is assumed to be similar in nature as well. Image segments are distinct due to a number of cues, including: color, texture, spatial frequency, contrast, size, shape, location, orientation, motion and stereo effect. It was found that four classes of meadow landscape-vegetation complexes may be distinguished based on colour components of the composition of two Landsat ETM+ images. Landscape-vegetation complexes are small geobotanic units corresponding to the nanochore level of physico-geographical units. The aim of this article was to find additional cues useful for meadow interpretation on satellite images. The hypothesis was that it was possible to employ size and shape factors in interpreting grasslands areas. Length, perimeter and area were measured for 52 segments. Classification parameters were adjusted in an empirical manner. Two indexes were produced: a stretch index and a size index calculated based on the three factors. Both indexes are required for identification of fresh meadows in use (complexes of U type), in opposition to other categories of grasslands. 13 U-type landscape--vegetation complexes were found during terrain research. Among them, 11 were correctly classified. 2 complexes of other types were incorrectly classified as U-type. Size and shape analysis appears to be an additional criterion in grassland interpretation.
Źródło:
Archiwum Fotogrametrii, Kartografii i Teledetekcji; 2006, 16; 331-339
2083-2214
2391-9477
Pojawia się w:
Archiwum Fotogrametrii, Kartografii i Teledetekcji
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Ocena przydatności poziomu multifraktalności do opisu wysokorozdzielczych danych pozyskanych przez satelity Landsat
Evaluation of degree of multifractality for description of high resolution data acquired by Landsat satellites
Autorzy:
Wawrzaszek, A.
Walichnowska, M.
Krupiński, M.
Powiązania:
https://bibliotekanauki.pl/articles/131070.pdf
Data publikacji:
2015
Wydawca:
Stowarzyszenie Geodetów Polskich
Tematy:
fraktal
mapa multifraktalnosci
analiza obrazu
klasyfikacja
zobrazowania satelitarne
fractal
multifractal map
image analysis
classification
satellite images
Opis:
W ramach pracy przeanalizowano 6 scen o trzydziestometrowej rozdzielczości pochodzące z satelitów Landsat 5, 7 i 8, zarejestrowane w sześciu zakresach długości fali i prezentujące obszar Warszawy. Stosując dwa algorytmy podziału dużych scen – sąsiadujący i pływający stworzono mapy multifraktalności. Przeprowadzona analiza pozwoliła ocenić, czy scena zarejestrowana w badanych zakresach wykazuje cechy multifraktalne oraz czy wybór rozmiaru podziału sceny w trakcie analiz ma istotny wpływ na uzyskane charakterystyki multifraktalne oraz ich błąd wyznaczenia. W ogólności pierwsza interpretacja przeprowadzonych analiz pokazała, że poziom multifraktalności stosowany dla danych o trzydziestometrowej rozdzielczości nie wykazuje bezpośredniego związku z formą pokrycia terenu. Należy przy tym jednak zaznaczyć, że rozważane dane nie zostały poddane wcześniejszemu przetworzeniu, co zgodnie z podjętą w pracy dyskusją, może stanowić jedną z metod polepszenia uzyskanych wyników.
In the frame of this work six satellite images (at six spectral bands) from Landsat 5, Landsat 7 and Landsat 8 have been analysed. For this purpose 30 meter resolution images showing the regions of Warsaw have been used. The conducted research allowed for verification if the whole scene presents multifractal features and if size of the division of the scene used during the analysis has a significant influence on the multifractal characteristic and error in their calculation. Initial interpretation of the obtained results showed, that the use of degree of multifractality determined for remote sensing data with the 30 meters resolution does not reveal direct relation with land cover classes. It should be noted, however, that the considered data have not been the subject of a previous processing, which according to the discussion performed in this work can be considered as one of the methods to achieve an improvement in results.
Źródło:
Archiwum Fotogrametrii, Kartografii i Teledetekcji; 2015, 27; 175-184
2083-2214
2391-9477
Pojawia się w:
Archiwum Fotogrametrii, Kartografii i Teledetekcji
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wybrane przykłady wykorzystania morfologii matematycznej w przetwarzaniu obrazów w teledetekcji
Selected examples of applying mathematical morphology to image processing in remote sensing
Autorzy:
Kupidura, P.
Marciniak, J.
Koza, P.
Kowalczyk, M.
Powiązania:
https://bibliotekanauki.pl/articles/130834.pdf
Data publikacji:
2008
Wydawca:
Stowarzyszenie Geodetów Polskich
Tematy:
morfologia matematyczna
filtracja obrazu
klasyfikacja obiektowa
wykrywanie krawędzi
mathematical morphology
image filtration
object-oriented classification
edge detection
Opis:
Morfologia matematyczna stanowi zbiór nieliniowych operacji, umożliwiających zmianę struktury obrazu cyfrowego. Jej specyficzna natura pozwala na przetwarzanie obrazów w zależności od kształtu, wielkości, tekstury czy sąsiedztwa obiektów obecnych na zdjęciu. W artykule przedstawiono wyniki uzyskiwane w projekcie MNiSzW Nr N526 034 32/3448, poświęconym w całości wykorzystaniu operacji morfologicznych w przetwarzaniu danych teledetekcyjnych. Wnioski wynikające z przeprowadzonych badań potwierdzają wysoką skuteczność morfologii matematycznej w wielu różnorodnych zastosowaniach, jak filtracja dolnoprzepustowa, wydzielanie na obrazie heterogenicznych typów obiektów, czy wykrywanie krawędzi obiektów. W artykule przedstawiono analizę możliwości wykorzystania funkcji morfologicznych w przetwarzaniu danych teledetekcyjnych. Zaprezentowano również założenia darmowego oprogramowania BlueNote, tworzonego w ramach projektu.
The paper presents results of a research project concerning the application of mathematical morphology in remote sensing. Mathematical morphology was developed created in the 1960s by two Fench scientists: Jean Serra and George Matheron. Since then, the great progress in this discipline has led to the development of many different operators. Their most important advantage is involving important features of objects in the image, such as size, shape, texture, and neighbourhood. Because of that, selected morphological operators are used in digital image processing in many fields, including remote sensing. However, the analysis shows mathematical morphology to have an even greater potential in this field. The first line of thought presented is the object-oriented classification. The traditional, pixelbased algorithms are often ineffective when classifying selected heterogenic types of land cover. A morphological operator developed by Kupidura, involving a combination of results of opening and closing of the original image, allows to extract the class of orchards by using a simple pixelbased algorithm. The subsequent research showed that granulometric maps, first presented by Serra, which – for each pixel - generate a set of values denoting heterogeneity of the pixel neighbourhood, allow to extract the built-up class in a traditional classification process. The issue in which morphological operators prove their high efficiency is noise removal. Application of alternate filters allows to filter out both optical and microwave images with a high noise level. Noteworthy is that the filters show inpressive results wherever detail preservation is concerned. The project involved also experiments on edge detection with morphological gradient Preliminary results showed a high efficiency of those procedures comperable to Sobel’s gradient. An additional aim of the project was to develop software that would allow running any combination of morphological operators. The software called BlueNote will be available free of charge, which could lead to further increase of applications of mathematical morphology to remote sensing.
Źródło:
Archiwum Fotogrametrii, Kartografii i Teledetekcji; 2008, 18a; 323-332
2083-2214
2391-9477
Pojawia się w:
Archiwum Fotogrametrii, Kartografii i Teledetekcji
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Aparaturowe i metodologiczne aspekty ilościowej analizy mikrostruktury żeliwa
Quantitative analysis of cast iron microstructure in terms of the apparatus and methodology
Autorzy:
Warmuzek, M.
Boroń, Ł.
Tchórz, A.
Powiązania:
https://bibliotekanauki.pl/articles/391395.pdf
Data publikacji:
2011
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Odlewnictwa
Tematy:
mikrostruktura
analiza obrazu
grafit
żeliwo
parametry stereologiczne
klasyfikacja grafitu
microstructure
image analysis
graphite
cast iron
stereological parameters
graphite classification
Opis:
W pracy porównano wyniki zastosowania różnych systemów obrazowania mikrostruktury (mikroskop świetlny oraz tomograf rentgenowski) oraz różnych systemów analizy obrazu do pomiaru wybranych parametrów stereologicznych i geometrycznych dla dwóch modeli morfologicznych, występujących w stopach odlewniczych, na przykładzie żeliwa z grafitem sferoidalnym i kratkowym. Wykazano statystycznie istotne różnice pomiędzy uzyskanymi wynikami pomiarów, spowodowane przede wszystkim jakością obrazu poddanego analizie oraz lokalnymi cechami geometrycznymi analizowanych obiektów. Porównano wyniki klasyfikacji wydzieleń grafitu według klas wielkości przyjętych w obowiązującej normie PN-EN ISO 945-1, przeprowadzonej na podstawie różnych procedur obrazowania.
In this work the results of the application of different imaging techniques and image analysis systems for measurements of chosen either stereological parameters or geometrical features for some of morphology models occurring in the cast alloys, especially taking into account cast iron with either spheroidal or vermicular graphite have been compared and interpreted. The statistical important difference of the obtained results have been stated and recognized as caused first of all by quality of analyzed images and local geometry features of the analyzed objects. The results of the graphite particles classification according to the size class in the actual standard PN-EN ISO 945-1, using different imaging and analysis procedures.
Źródło:
Prace Instytutu Odlewnictwa; 2011, 51, 3; 59-87
1899-2439
Pojawia się w:
Prace Instytutu Odlewnictwa
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Automatyczna klasyfikacja komórek rozmazu krwi obwodowej na przykładzie zatrucia ołowiem
Automatic classification of peripheral blood smear cells by the example of lead poisoning
Autorzy:
Michalski, Adrian
Kupcewicz, Bogumiła
Powiązania:
https://bibliotekanauki.pl/articles/762603.pdf
Data publikacji:
2020-07-28
Wydawca:
Polskie Towarzystwo Farmaceutyczne
Tematy:
uczenie maszynowe
analiza rozmazu krwi obwodowej
klasyfikacja białych krwinek
przetwarzanie obrazu
Image Processing
machine learning
peripheral blood smear analysis
leukocyte classification
Opis:
The first symptoms caused by heavy metals poisoning are usually non-specific, therefore their diagnosis requires specialized knowledge and experience. Incorrect diagnosis can lead to various disorders and irreversible changes in patient’s health. Lead poisoning is one of the heavy metals poisoning which is associated with non-specific symptoms and may cause a broad range of biochemical, physiological and behavioral disfunctions. Lead is commonly found in industry and manufacturing and in 2017, lead poisoning caused over a million deaths worldwide. Due to non-specific symptoms, lead poisoning is often diagnosed too late or incorrectly. Early symptoms are headache and stomachache, which potentiate with metal concentration. Lead poisoning increasing risk of anemia due to inhibition the ability to produce hemoglobin by interfering the heme biosynthesis pathway and decreasing red blood cell survival. Because of regularly occurred disorders of hematopoiesis and the presence of atypical cell in smears, diagnosis of lead poisoning that gives relevant information is bone marrow and peripheral blood smear study. The manual smear test made by qualified technician involves the evaluation of the preparation by using an optical microscope. Manual microscopic examination of blood cells is time-consuming and subjective. Automation of this process would enable to reduce the risk of human failure and solve the problem with lack of professional staff. Traditional machine learning is the most popular approach to automating microscopic smear testing. This method consists of the following stages: microscopic image acquisition, preprocessing, cell segmentation, feature extraction, followed by classification into types, artifacts and atypical cells. This work presents the recent methods proposed to automate the analysis of peripheral blood and bone marrow smears using traditional machine learning methods. A review of different machine learning methods was carried out, focusing on the presentation of an algorithm for the construction of automatic blood cell classifiers.
Pierwsze objawy pacjenta po zatruciu metalami ciężkimi są najczęściej nieswoiste, dlatego ich diagnostyka jest zadaniem wymagającym specjalistycznej wiedzy i doświadczenia. Nieprawidłowa diagnoza może prowadzić do nieodwracalnych zmian w stanie zdrowia pacjenta. Jednym z metali ciężkich, którym zatrucie wiąże się z nieswoistymi objawami, a może prowadzić do poważnych zaburzeń neurologicznych i hematologicznych jest ołów. Ołów jest metalem ciężkim powszechnie występującym w przemyśle i produkcji. W 2017 roku zatrucie tym metalem było przyczyną ponad miliona zgonów na świecie. Z powodu nieswoistych objawów zatrucie ołowiem często jest diagnozowane nieprawidłowo i zbyt późno. Zatrucie metalami ciężkimi może prowadzić do zaburzeń hematopoezy i pojawienia się w rozmazach krwi i szpiku kostnego komórek atypowych, w związku z czym badaniem niosącym istotną informację w diagnostyce zatrucia jest ocena komórek w rozmazach. Analiza rozmazu manualnego polega na ocenie preparatu przy użyciu mikroskopu optycznego oraz szczegółowej interpretacji obrazu mikroskopowego wykonywanej przez wykwalifikowany personel. Automatyzacja tego procesu pozwoliłaby na ograniczenie ryzyka pomyłki spowodowanej błędem ludzkim oraz rozwiązanie problemu braku doświadczonego personelu. Najpopularniejszym podejściem wykorzystywanym w automatyzacji mikroskopowego badania rozmazu jest tradycyjne uczenie maszynowe. Metoda ta, składa się z kilku etapów: zbieranie obrazów mikroskopowych i ich wstępna obróbka, wyodrębnienie komórek oraz ich charakterystycznych cech, a następnie klasyfikacja na rodzaje, artefakty i komórki atypowe. W pracy opisano aktualnie proponowane sposoby automatyzacji badania rozmazu krwi obwodowej i szpiku kostnego, wykorzystujące tradycyjne metody uczenia maszynowego. Przeprowadzono przegląd metod uczenia maszynowego, skupiając się na przedstawieniu algorytmu postępowania w konstrukcji automatycznych klasyfikatorów komórek krwi.
Źródło:
Farmacja Polska; 2020, 76, 6; 318-323
0014-8261
2544-8552
Pojawia się w:
Farmacja Polska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Klasyfikacja i zliczanie pojazdów na podstawie danych wideo
Vehicle classification and counting on the basis of video data
Autorzy:
Czapla, Z.
Powiązania:
https://bibliotekanauki.pl/articles/312559.pdf
Data publikacji:
2016
Wydawca:
Instytut Naukowo-Wydawniczy "SPATIUM"
Tematy:
ruch drogowy
dane obrazowe
pojazdy
metody przetwarzania obrazu
klasyfikacja pojazdów
zliczanie pojazdów
pomiary parametrów ruchu drogowego
road traffic
vehicle classification
image data
vehicles
image processing approaches
couting vehicles
measuring traffic parameters
Opis:
Artykuł przedstawia metodę klasyfikacji i zliczania pojazdów na podstawie danych wideo. Wejściowa sekwencja obrazów składa się z ramek pobranych ze strumienia wideo otrzymywanego z kamery umieszczonej nad drogą. Poszczególne obrazy wejściowej sekwencji obrazów są przetwarzane oddzielnie. Definiowane są dwa pola detekcji, początkowe pole detekcji i końcowe pole detekcji. Obrazy wejściowej sekwencji obrazów są konwertowane do reprezentacji punktowej. Obliczana jest suma punktów krawędziowych dla każdego pola detekcji. Na podstawie sum punktów krawędziowych wyznaczane są stany pól detekcji. Analiza stanów pól detekcji umożliwia klasyfikację i zliczanie pojazdów. W artykule zamieszczono wyniki pomiarów.
The paper presents a method of vehicle classification and counting on the basis of video data. The input image sequence consists of consecutive frames taken from the video stream obtained from the camera placed above a road. Individual images from the input image sequence are processed separately. Two detection fields are defined, the initial detection field and the final detection field. Images from the input image sequence are converted into point representation. The sum of the edge points is calculated for each detection field. On the basis of the sums of edge points, states of the detection fields are determined. Analysis of the states of the detection fields allows vehicle classification and counting. Experimental results are provided.
Źródło:
Autobusy : technika, eksploatacja, systemy transportowe; 2016, 17, 6; 562-565
1509-5878
2450-7725
Pojawia się w:
Autobusy : technika, eksploatacja, systemy transportowe
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-13 z 13

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies